Гранат на основе скандия иттрия и алюминия. Гранаты синтетические

Существует несколько видов синтезированных камней которые не встречаются в природе. Эти кристаллы вырастили случайно когда производили исследования в области физики твёрдого тела. Некоторые из этих кристаллов после огранки начали использовать в ювелирном деле.

Титанат стронция

Одним из таких является синтетический титанат стронция которое вырастили в горелке Вернейля. Титанат стронция имеет химический состав SrTiO3. Титанат стронция как и минерал перовскит (CaTiO3) очень схожи по своей кубической структуре и форме кристаллов. Титанат стронция изотропен, почти бесцветен, имеет показатель преломления в натриевом свете 2,410, дисперсию 0,19 в интервале от B до G, удельный вес 5,1, твёрдость 6. Титанат стронция также имеет и другие названия такие как старилиан, фабулит, диагем. Титанат стронция с бриллиантовой огранкой очень похож на алмаз хотя его легко можно распознать даже по твёрдости или по удельному весу у алмаза он составляет 3,52, к тому же он не флюоресцирует в ультрафиолетовом свете. Из-за того что титанат стронция легко отличить от алмаза его не стали использовать в ювелирном деле.

Ниобат лития

Ещё одно вещество которое не встречается в природе но искусственно можно вырастить это ниобат лития. Ниобат натрия попал на ювелирный рынок Америки под названием Линобат. Ниобат лития выращивают в основном бесцветным но если добавить специальные присадки то он может приобрести цвет от красного до фиолетового. Ниобат лития имеет химический состав LiNbO3. По своим химическим свойствам он очень близок к свойствам титаната стронция. Но в отличие от Титаната стронция это искусственно выращенное вещество не изотропное, а одноосное или по другому тригональное. Ниобат лития имеет показатели преломления обыкновенного луча в натровом свете 2,30, показатели преломления не обыкновенного луча 2.21. У ниобата лития твёрдость 5,5, удельный вес 4,64, дисперсия 0,120 в интервале от B до G, что в 3 раза выше дисперсии алмаза.

Физики синтезировали несколько веществ по структуре очень похожими на гранаты. Такие минералы в природе не встречаются. Эти гранатоподобные вещества имеют химическую формулу X3AL3O12. Эти вещества создают в горелке Вернейля или по методу Чохральского при котором подвешенный над расплавом натуральный минерал в качестве затравки опускают до того момента когда она прикоснётся к поверхности расплава, а затем её поднимают и при этом её вращают. Из-за этого кристалл получается крупным цилиндрической формы. Такой процесс ещё называют вытягиванием из расплава. Самыми востребованными из этих веществ являются Иттрий алюминиевого граната и Даймонэр. Обычно Иттрий алюминиевый гранат и Даймонэр изготавливают бесцветными но можно придать им различный цвет добавив для этого специальную примесь. Например если добавить хром то вещество приобретёт зелёную окраску и станет похожим на демантоид. Отличить синтетическое вещество от демантоида можно по удельному весу так как у вещества удельный вес 4,6, а у демантоида намного меньше.

Химическая формула ИАГ: : . Этот лазер работает па четырехуровневой схеме. Первый уровень, называемый основным, соответствует min возможному значению энергии, которую могут иметь ионы.

Число ионов, имеющих min энергию, составляет большинство. Число ионов, находящихся на более высоких уровнях энергии, заметно меньше и оно подчиняется равновесному распределению Больцмана. В лазерах на гранате с неодимом нижние рабочие уровни заселены слабо, и поэтому основная доля мощности накачки расходуется не на создание инверсной населенности (), а на преодоление потерь в резонаторе и на полезное выходное излучение. При этом для возникновения генерации достаточно перевести на уровень 3 лишь малую часть ионов, находящихся на основном уровне. Это выгодно отличает этот вид лазеров от лазеров, работающих по трехуровневой схеме. В последних нижним рабочим уровнем является основной уровень, и для создания инверсной населенности (), требуется перевести на метастабильный уровень 2 не менее половины ионов с основного уровня, а с учетом потерь в резонаторе и полезного излучения больше половины. Поэтому в трехуровневых лазерах (например, на рубине) мощность накачки расходуется непроизводительно и их КПД оказывается существенно ниже. Состояние среды, когда N3>N2, называется инверсией населенности энергетических уровней. Иттрий-алюминиевый гранат с примесью неодима является уникальным материалом, обладающим хорошей теплопроводностью, большой твёрдостью и удовлетворительными оптическими свойствами. Подходящ для генерации в режиме синхронизации мод. Большое время жизни верхнего лазерного уровня (t = 0,23 мс) позволяет ИАГ быть весьма хорошим для работы в режиме модулированной добротности. ИАГ-лазеры могут работать как в непрерывном, так и в импульсном режиме. В обоих случаях обычно используются линейные лампы в схемах с одноэллипсным осветителем, с близким расположением лампы и кристалла или с многоэллипсным осветителем. Для работы в импульсном и непрерывном режимах применяются соответственно ксеноновые лампы среднего давления (500- 1500 мм рт. ст.) и криптоновые лампы высокого давления (4- 6 атм). Размеры стержней обычно такие же, как и у рубинового лазера. Выходные параметры ИАГ -лазера оказываются следующими: в непрерывном многомодовом режиме выходная мощность до 200 Вт; в импульсном лазере с большой скоростью повторения импульсов (50 Гц) средняя выходная мощность порядка 500 Вт; в режиме модулированной добротности максимальная выходная мощность до 50 МВт; в режиме синхронизации мод длительность импульса до 20 пс. Как в импульсном, так и в непрерывном режиме дифференциальный КПД составляет около 1-3%.

24. Полупроводниковые лазеры. Принцип действия, типы полупроводниковых лазеров. Спектральные и генерационные характеристики.

Полупроводниковые лазеры (ППЛ) испускают излучение в диапазоне длин волн 0,32-32 мкм. В качестве активной среды применяют полупроводниковые кристаллы. В них используются оптические переходы с участием свободных носителей тока в кристаллах, т.е. с участием состояний в электронных зонах.

Полупроводниковые лазеры обладают следующими особенностями:

Очень малыми размерами излучающей области,

Весьма высоким КПД (50-60%),

Малыми мощностями.

В сравнении с твердотельными и газовыми полупроводниковые лазеры обладают:

Меньшей когерентностью,

Направленностью (1-6°) и

Монохроматичностью луча (примерно 5 нм).

По способу накачки лазеры полупроводниковые делятся на:

Инжекционные,

С накачкой пробоем в электрическом поле,

С накачкой пучком быстрых электронов,

С оптической накачкой

Работают полупроводниковые лазеры преимущественно в импульсном режиме и при низких температурах, что вызвано необходимостью обеспечить теплоотвод, а также и тем, что при понижении температуры генерация возникает при меньших плотностях тока. В качестве активной среды наиболее широко применяют арсенид галлия с p-n-переходом, генерирующим излучение с длиной волны равной 0,84 мкм, и сплав арсенида и фосфида галлия. Возбуждение p-n-перехода осуществляют путем инжекции электронов.

По своим качествам, структуре и принципам работы полупроводниковые лазеры отличаются от других лазеров. Энергетические уровни, относящиеся к лазерному переходу, определяются всей кристаллической решеткой. Эти состояния не являются дискретными, а слиты в энергетические зоны, представляющие собой
группы энергетических состояний, расположенные очень тесно. Для лазера представляют интерес две энергетические зоны: валентная и проводимости.

Валентная зона является наиболее высоким состоянием, заполненным электронами. Зона проводимости лежит выше и отделена областью энергии, называемой запрещенной зоной, в которой нет никаких электронных состояний. При поглощении энергии электроны переходят из валентной зоны в зону проводимости. В валентной зоне остаются дырки. Аналогично электрон может перейти из зоны проводимости и рекомбинировать с дыркой в валентной зоне. При рекомбинации разность энергии испускается в виде излучения. Электроны инжектируются со стороны n-типа и рекомбинируют в области перехода. В результате этого возникает ток. Такие лазеры называются инжекционными. При прохождении тока должно создаваться достаточное количество дырок и электронов, так чтобы излучение, генерируемое при их рекомбинации, превышало потери, которые связаны с дифракционным выходом света из активной области, пропусканием света на границе перехода и поглощением света свободными носителями в области перехода. Поэтому существует пороговое значение плотности тока, необходимое для работы лазера.

Полупроводниковые лазеры не обладают малой расходимостью пучка, так как их излучение испускается через апертуру, ограниченную малой шириной перехода. Дифракция на узкой полосе перехода приводит к выходу излучения в более широком угле, чем для лазеров других типов. Поэтому излучение, например, лазера на арсениде галлия имеет вид луча эллиптического сечения с углом рассеяния на уровне 0.5, равным нескольким градусам в направлении, параллельном переходу, и большими размерами в направлении, перпендикулярном переходу.

Титанат стронция (фабулит)

По сравнению с рутилом этот синтетический камень более подходит для замены алмаза в ювелирных изделиях. Он совершенно бесцветен, оптически изотропен, и его показатель преломления (2,41) аналогичен алмазу. Дисперсия у фабулита (0,1 - 0,2) более высокая, что обеспечивает кра-сивую игру при изменении углов падения лучей света или освещения. Твердость фабулита 5,5 - 6,5, поэтому его целесообразно использовать для изготовления серег или кулонов, а не в кольцах, где он быстрее изотрется.

Синтез титаната стронция осуществляется по известному методу М. А. Вернейля.

После выращивания кристаллы обязательно отжигают в струе кислорода при низкой температуре. За рубежом промышленный выпуск фабу-лита осуществляет фирма "Националь Лед и К°" (США). В СССР фабулит не выпускается.

Иттрий-алюминиевый гранат (ИАГ)

Иттрий-алюминиевая окись (Y 3 A1 5 O 12) имеет структуру граната и чаще называется иттрий-алюминиевый гранат - ИАГ или гранатит. Выращивает-ся ИАГ чаще всего по методу Чохральского, однако хорошие результаты дает и метод кристаллизации из расплава с флюсом. Условия синтеза ИАГа весьма подобны условиям выращивания корунда.

Вначале иттрий-алюминиевый гранат применялся только в технике; добавляя некоторые лантаноиды (в частности, неодим), выращивали кристаллы, используемые в лазерной технике: кроме того, кристаллы ИАГ служат подложкой при синтезе ферримагнитных гранатов, применяемых в лазерной технике и радиоэлектронике.

В последние годы ИАГ широко применяют в ювелирных изделиях. Благодаря добавкам лантаноидов стало возможно получать кристаллы разного цвета - красные, зеленые, желтые, коричневые и др., не встречающиеся в природе. За рубежом ИАГ выпускает ряд фирм, наибольшую по-пулярность имеют гранаты фирмы "Линда" (США).

В СССР ИАГ изготавливают по методу направленной кристаллизации, позволяющему выращивать идеально правильные и чистые кристаллы.

Искусственный гранат образуется при высоких температурах в глубоком вакууме в специальных аппаратах. Завод выпускает светлые гранаты, розовые, желтые и зеленые. Время синтеза - около 4 суток. Ведутся иссле-дования, направленные на получение кристаллов ИАГ любой окраски - от пурпурной и лимонной до чисто-голубой и сиреневой.

Ниобат лития

Ниобат лития - LiNbO 3 - относительно мягкий синтетический камень (твердость около 5,5 по шкале Мооса). Интересен он прежде всего оптическими свойствами, что позволило использовать его в лазерной технике. Показатель преломления его 2,2 -2,3, дисперсия вы-сокая 0,12, что обеспечивает красивую игру камня.

Кристаллы выращивают по методу Чохральского. При добавках в расплав окислов металлов переходной группы можно получить кристаллы различной окраски: при введении окиси хрома - зеленую, окиси железа -красную, окиси кобальта - голубую или синюю. В СССР ниобат лития не синтезируют.

Алюмо-Иттриевый гранат (АИГ) это оптический материал пригодный для использования в УФ и ИК оптике . Изделия из YAG можно применять в качестве оптических элементов в широкой области спектра от 250-5000 нм. Механические и химические свойства YAG близки к сапфиру, однако YAG не обладает двулучепреломлением и его обработка несколько проще,чем обработка сапфира. YAG не имеет линий поглощения в области 2 – 3мкм, где обычно стекла имеют тенденцию высокого поглощения из за сильных связей молекул воды. Благодаря высоким показателям прочности, порога разрушения, показателя преломления и теплопроводности YAG может быть использован при высоких температурах и в высокомощных лазерах.

Мы используем для нашей оптики высококачественные кристаллы, выращеные по методу Чохральского и горизонтальным методом по выбору заказчика. Наша фирма осуществляет лазерную полировку YAG, изготавливая светопроводы, призмы и зеркала.

Оптические свойства

Область пропускания, мкм 0.21 to 5.3
Показатель преломления, при 1.064 мкм 1.82
Потери при отражении, % для двух поверхностей 1.064 мкм 16.7%
Термооптический фактор (dT), 633 нм 7.3 * 10 -6 * K -1

Физические свойства

Плотность, г/см3(20°C) 4.56
Растворимость Нерастворим в воде
Тип материала Синтетический монокристалл
Кристаллическая структура кубическая
Точка плавления °C 1940
Теплопроводность W * cm -1 * °K -1 0.14
Температурный коэффициент линейного расширения 1/°C 7.8 x 10 -6
Удельная теплоёмкость J /(kg * K ) at 0 °C 590
Диэлектрическая постоянная 11.7
Модуль Юнга (E ), GPa 300
Коэффициенты упругости C 11 = 333
C 12 = 111
C 44 = 115
предел упругости MPa 280
Твёрдость по Моосу ~8,5


Иттрий алюминиевый гранат легированный неодимом (Y 3 A 15 O 12:Nd 3+ )

Алюмо-Иттриевый гранат легированный неодимом( Y 3 A 15 O 12:Nd 3+) - лазерный кристалл, который широко используется в промышленных, медицинских и научных целях. Его основными преимуществами являются: низкий порог генерации, высокий КПД, низкие потери на 1.064 µm , а также высокое оптическое качество, хорошая теплопроводность и устойчивость к перепадам температур, стабильные химические и механические свойства, что позволяет применять Nd :YAG во всех типах твердотельных лазеров.

Свойства
Химическая формула Nd 3+ :Y 3 Al 5 O 12
Кристаллическая структура Кубическая
Концентрация лигатуры,ат.% 0.5 - 1.2
Постоянная решетки, A 12.01
Плотность г/см3 4.56
Точка плавления, °C 1950
Диэлектрическая постоянная 11.7
Твердость по Моссу 8.5
7.8 x 10 -6 x °K -1 , <111>
8.2 x 10 -6 x °K -1 , <100>
Теплопроводность 25°C, W x cm -1 x °K -1 0.14
Коэффицент потерь при 1064 nm, cm -1 0.003
Коэффицент преломления, при 1 µm 1.82

Спецификация лазерных стержней Nd:YAG

Материал Иттрий алюминиевый гранат легированный неодимом
Уровень легирования 0.5 - 2.3 %
Разброс легирования +/- 0.1 %
Ориентация <111>
Допуск ориентации +/-5º
Допуск по диаметру +/- 0.05 мм
Допуск по длине +/- 0.5 мм илипо требованию
Паралельность
Перпендикулярность
Искажение волнового фронта Lambda/8на дюйм на 633 нм
Плоскостность Lambda/10 на 633 nm или по требованию заказчика
Точки-царапины 10-5 MIL – 13830B
Боковая поверхность Шлифованные или полированные
Световая аппертура 90% центральная часть
Фаски <0.15 мм x 45º
Покрытия AR покрытия R<0.2% с поверхности на1064 nm или по требованию заказчика

Дополнительно АРД-ОПТИКС предлогает услуги по ремонту
(переполировка и нанесение покрытий) лазерных элементов заказчика

Иттрий алюминиевый гранат легированный эрбием (Er:Y 3 Al 5 O 12 или Er:YAG)

Иттрий алюминиевый гранат, легированный эрбием ( Er :Y 3 Al 5 O 12 или Er :YAG ) - лазерный кристалл, который имеет широкие преимущества при использовании на длине волны 2.94 µ. Er :YAG имеет высокое оптическое качество, высокий КПД , хорошую теплопроводность, стабильные химические и механические свойства. Er :YAG накачивается в широкой области 600 - 800 нм. Все эти свойства делают Er :YAG превосходным материалом для стоматологических и других медицинских лазеров.

Основные свойства
Химическая формула Er:Y 3 Al 5 O 12
Кристаллическая структура Cubic
Концентрация лигатуры, ат.% 1 - 50%
Постоянная решетки, A 12.00
Плотность,г/см3 5.35
Точка плавления, ºC 1970
Диэлектрическая постоянная 11.7
Твердость по Моссу 8.5
.Коэффицент термического расширения 7.7 x 10-6 x ºK-1, <111> 8.2 x 10-6 x ºK-1, <100>
Теплопроводность при 25ºC, W x cm-1 x ºK-1 0.12
Коэффицен потерь на 1064 нм, cm-1 0.003
Длина волны излучения, нм 2940
Коэффицент преломления, на 2940 нм 1.79

Спецификация лазерных стержней Er:YAG

Материал Иттрий алюминиевый гранат легированный эрбием
Уровень легирования 1 - 50 %
Ориентация <111>
Допуск на ориентацию +/-5º
Допуск на диаметр +/- 0.05 мм
Допуск на длинуe +/- 0.5 мм или по требованию заказчика
Паралельность
Перпендикулярность
Искажение волнового фронта Lambda/8 на дуйм на 633 нм
Плоскостностьs Lambda/10 at 633нм или по требованию заказчика
Царапины-точки 10-5
Бокавая поверхность Шлифованные или полированные
Световая аппертура 90%
Фаски <0.15 mm x 45º
Покрытия AR покрытия с R<0.25 % на 2940 нм или по требованию заказчика

Дополнительно АРД-ОПТИКС предлогает услуги по ремонту
(переполировка и нанесение покрытий) лазерных элементов заказчика

Иттрий алюминиевый гранат легированный иттербием (Yb: Y 3 Al 5 O 12 или Yb:YAG)

Алюм-иттриевый гранат, легированный иттербием(Yb: Y 3 Al 5 O 12 или Yb:YAG ) является одним из многообещающих лазерных активных материалов и более удобным для диодной накачки по сравнению с традиционными Nd гранатами. Он может генерировать на длине волны 1,03µ при накачке 940 нм. Основные преимущества Yb :YAG : широкая полоса поглощения, высокая эффективность и превовсодная эммисия. Лазерный материал Yb :YAG широко используется в промышленных лазерах для резки и сварки металлов. Этот кристалл также применяется в электронике, оптике и в лазерных технологиях.

Основные свойства
Химическая формула Yb 3+ :Y 3 Al 5 O 12
Кристаллическая структура кубическая
Концентрация легирования,ат.% 5 - 30 %
Постоянная решетки, A 12.01
Плотность г/см3 4.56
Точка плавления, °C 1970
Твердость по Моссу 8.5
Коэффицент термического расширения 7.8 x 10 -6 x °K -1 , <111>
Теплопроводность25°C, W x cm -1 x °K -1 0.14
Коэффицент потерь на 1064 нм, см -1 0.003
Длина волны генерации, нм 1030
Коэффицент преломления, на 1 µ 1.82

Спецификация лазерных стержней Yb:YAG

Материал Иттрий алюминиевый гранат легированный иттербием
Уровень легироваия 5 - 30 %
Ориентация <100>
Допуск на ориентацию +/-5º
Допуск на диаметр +/- 0.05 мм
Допуск на длину +/- 0.5 мм или по требванию заказчика
Параллельность
Перпендикулярность
Искажение волнового фронта Lambda/8 на дуйм на 633 нм
Плоскостность Lambda/10 на 633 нм или по требованию заказчика
Точки-царапины 10-5
Боковая поверхность Шлифованные или полированные
Световая аппертура 90% центральной области
Фаски <0.15 мм x 45º
Покрытия AR покрытия с R<0.25% с поверхности на требуемой длине волны

Дополнительно АРД-ОПТИКС предлогает услуги по ремонту
(переполировка и нанесение покрытий) лазерных элементов заказчика

Одним из наиболее широко используемых в настоящее время твердотельных лазеров является лазер, в котором матрицей служит иттрий-алюминиевый гранат а активатором - ионы . Принятое обозначение этого лазера

Лазер имеет сравнительно низкий порог возбуждения и высокую теплопроводность, что позволяет реализовать генерацию при большой частоте следования импульсов, а также генерацию в непрерывном режиме. КПД лазера сравнительно высок; он достигает нескольких процентов.

Основные переходы иона неодима в гранате показаны на рис. 1.16. Переходы совершаются между определенными атомными которые изображены на рисунке в виде «энергетических полос». Каждой «полосе» (каждому терму) соответствует группа относительно узких энергетических уровней, возникших в результате расщепления данного терма в электрическом поле кристаллической решетки граната (штарковское расщепление).

В процессе накачки ионы неодима переходят из основного состояния, соответствующего терму в три группы состояний: А, Б, В. Группа А соответствует термам группа Б - термам и группа В - терму Этим трем группам состояний отвечают три полосы в спектре поглощения неодима в гранате,

представленном на рис. 1.17, а (соответственно А-, Б- и В-полосы). Тонкая структура полос поглощения, хорошо видная на рисунке, отражает эффект штарковского расщепления термов.

Терм является верхним рабочим «уровнем». Ионы неодима высвечиваются, переходя с этого «уровня» на уровни, соответствующие термам . Основная доля энергии (60%) высвечивается в переходах в качестве нижних рабочих уровней принято рассматривать уровни, соответствующие терму На рис. представлен спектр люминесценции неодима в гранате для переходов Спектр содержит 7 линий; наиболее интенсивны линии 1,0615 и 1,0642 мкм. В табл. 1.1 приведены значения длин волн для 18 линий люминесценции с учетом различных переходов 114]; данные получены при температуре 300 К. При упрощенном рассмотрении лазера можно пользоваться четырехуровневой рабочей схемой; основной «уровень» - терм 4/9/2, нижний рабочий «уровень» - терм верхний рабочий «уровень» - терм «уровень» возбуждения - термы и Заметим, что переходы запрещены в дипольном приближении (оптически запрещены), поскольку при таких переходах орбитальное квантовое число иона неодима изменяется на 3; следовательно, состояния, соответствующие -термам, являются метастабильными.


Top