Энергия гиббса протекание реакции. Энергия гиббса

Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ΔH ), и энтропийным T ΔS , обусловленным увеличением беспорядка в системе вследствие роста ее энтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G , кДж):

При ΔG G = 0, при котором наступает равновесное состояние обратимого процесса; ΔG > 0 указывает на то, что процесс термодинамически запрещен (рис. 4.4).

Рисунок 4.4.

Изменение энергии Гиббса: а – обратимый процесс; б – необратимый процесс.

Записав уравнение (4.2) в виде ΔH = ΔG + T ΔS , получим, что энтальпия реакции включает свободную энергию Гиббса и «несвободную» энергию ΔS · T . Энергия Гиббса, представляющая собой убыль изобарного (P = const) потенциала, равна максимальной полезной работе. Уменьшаясь с течением химического процесса, ΔG достигает минимума в момент равновесия (ΔG = 0). Второе слагаемое ΔS · T (энтропийный фактор) представляет ту часть энергии системы, которая при данной температуре не может быть превращена в работу. Эта связанная энергия способна лишь рассеиваться в окружающую среду в виде тепла (рост хаотичности системы).

Итак, в химических процессах одновременно изменяются энергетический запас системы (энтальпийный фактор) и степень ее беспорядка (энтропийный фактор, не совершающая работу энергия).

Анализ уравнения (4.2) позволяет установить, какой из факторов, составляющих энергию Гиббса, ответственен за направление протекания химической реакции, энтальпийный (ΔH ) или энтропийный (ΔS · T ).

  • Если ΔH S > 0, то всегда ΔG
  • Если ΔH > 0 и ΔS G > 0, и реакция с поглощением теплоты и уменьшением энтропии невозможна ни при каких условиях.
  • В остальных случаях (ΔH S H > 0, ΔS > 0) знак ΔG зависит от соотношения ΔH и T ΔS . Реакция возможна, если она сопровождается уменьшением изобарного потенциала; при комнатной температуре, когда значение T невелико, значение T ΔS также невелико, и обычно изменение энтальпии больше T ΔS . Поэтому большинство реакций, протекающих при комнатной температуре, экзотермичны. Чем выше температура, тем больше T ΔS , и даже эндотермические реакции становятся осуществляемыми.

Проиллюстрируем эти четыре случая соответствующими реакциями:

ΔH ΔS > 0
ΔG

C 2H 5–O–C 2H 5 + 6O 2 = 4CO 2 + 5H 2O
(реакция возможна при любой температуре)

ΔH > 0
ΔS ΔG > 0

реакция невозможна

ΔH ΔS ΔG > 0, ΔG

N 2 + 3H 2 = 2NH 3 (возможна при низкой температуре)

ΔH > 0
ΔS > 0
ΔG > 0, ΔG

N 2O 4(г) = 2NO 2(г) (возможна при высокой температуре).

Для оценки знака ΔG реакции важно знать величины ΔH и ΔS наиболее типичных процессов. ΔH образования сложных веществ и ΔH реакции лежат в пределах 80–800 кДж∙. Энтальпия реакции сгорания всегда отрицательна и составляет тысячи кДж∙. Энтальпии фазовых переходов обычно меньше энтальпий образования и химической реакции Δ – десятки кДж∙, Δ и Δ равны 5–25 кДж∙.

Зависимость ΔH от температуры выражается соотношением ΔH T = ΔH ° + ΔC p · ΔT , где ΔC p – изменение теплоемкости системы. Если в интервале температур 298 К – Т реагенты не претерпевают фазовых превращений, то ΔC p = 0, и для расчетов можно пользоваться значениями ΔH °.

Энтропия индивидуальных веществ всегда больше нуля и составляет от десятков до сотен Дж∙моль –1K –1 (табл. 4.1). Знак ΔG определяет направление реального процесса. Однако для оценки осуществимости процесса обычно пользуются значениями стандартной энергии Гиббса ΔG °. Величина ΔG ° не может использоваться в качестве критерия вероятности в эндотермических процессах со значительным возрастанием энтропии (фазовые переходы, реакции термического разложнения с образованием газообразных веществ и др.). Такие процессы могут быть осуществлены за счет энтропийного фактора при условии

Задачи и тесты по теме "Химическая термодинамика. Энергия Гиббса"

  • Химические элементы. Знаки химических элементов - Первоначальные химические понятия и теоретические представления 8–9 класс

    Уроков: 3 Заданий: 9 Тестов: 1

Методические указания и задания к контрольной работе по химии: Закономерности химических процессов.

I. Методические указания.

Общие положения.

Закономерности химических процессов являются предметом изучения двух разделов хи­мии: химической термодинамики и химической кинетики.

Химическая термодинамика изучает энергетические эффекты реакций, их направ­ление и пределы самопроизвольного протекания.

Объект изучения в химической термодинамике - термодинамическая система (в дальнейшем просто система) - это совокупность взаимодействующих веществ, мысленно или реально обособленная от окружающей среды.

Система может находиться в различных состояниях. Состояние системы определяется численными значениями термодинамических параметров: температуры, давления, концен­траций веществ и пр. При изменении значения хотя бы одного из термодинамических параметров, например, температуры происходит изменение состояния системы. Изменение состояния системы называется термодинамическим процессом или просто процессом.

Процессы могут протекать с различными скоростями. Изучением скоростей процессов и факторов, влияющих на них, занимается раздел химии, называемый химической кинетикой.

В зависимости от условий перехода системы из одного состояния в другое, в химической термодинамике различают несколько типов процессов, простейшими из которых являются изо­термический, протекающий при постоянной температуре (Т=соnst), изобарный, протекающий при постоянном давлении (р=соnst), изохорный, протекающий при постоянном объёме (V=соnst) и адиабатический, который осуществляется без обмена теплотой между системой и окружающей средой (q=соnst). Наиболее часто в химической термодинамике реакции рассматриваются как изобарно-изотермические (р=соnst, Т==соnst) или изохорно-изотермические (V=соnst, Т==соnst) процессы.

Чаще всего в химической термодинамике рассматриваются реакции, притекающие в стандартных условиях, т.е. при стандартной температуре и стандартном состоянии всех веществ. В качестве стандартной принята температура 298К. Стандартным состоянием вещества является его состояние при давлении 101,3 кПа. Если вещество находится в растворе, за стан­дартное принимается его состояние при концентрации 1 моль/л.

Предметом рассмотрения химической термодинамики являются процессы. Для ха­рактеристики процессов химическая термодинамика оперирует особыми величинами, называе­мыми функциями состояния: U - внутренняя энергия. Н - энтальпия, S - энтропия, G - энергия Гиббса и F - энергия Гельмгольца. Количественными характеристиками любого процесса являются изменения функций состояния, которые и определяются методами химической термодинамики: rU, rH, rS, rG, rF.

2. Термохимические расчёты.

(Задачи №№1-20)

Термохимический расчёт заключается в определении теплового эффекта реакции (теплоты реакции). Теплотой реакции, называется количество выделенной или поглощённой теплоты q. Если в ходе реакции теплота выделяется, такая реакция называется экзотермической, если теплота, поглощается, реакция называется эндотермической.

Численное значение теплоты реакции зависит от способа её проведения. В изохорном процессе, проводимом при V=соnst, теплота реакции qv = rU, в изобарном процессе при
р =
соnst тепловой эффект qp = rH. Таким образом, термохимический расчёт заключается в определении величины изменения или внутренней энергии, или энтальпии в ходе реакции. Поскольку подавляющее большинство реакций протекает в изобарных условиях (например, это все реакции в открытых сосудах, протекающие под атмосферным давлением), при проведении термохимических расчётов практически всегда производится расчёт rН. Если rН < 0, то реакция экзотермическая, если же rН > 0, то реакция эндотермическая.

Термохимические расчёты производятся, используя следствие из закона Гесса: тепловой эффект реакции равен сумме теплот (энтальпий) образования продуктов реакции за вычетом суммы теплот (энтальпий) образования реагентов.

Запишем в общем виде уравнение реакции: аА + bВ = сС + dD. Согласно следствию из закона Гесса теплота реакции определяется по формуле:

rН = (c rН обр, С + d rН обр, D) - (а rН обр,А + b rН обр,В) (2.1)

гдеrН - теплота реакции; rН обр - теплоты (энтальпии) образования, соответственно, продуктов реакции С и D и реагентов А и В; с, d, а, b - коэффициенты в уравнении реакции, называемые стехиометрическим и коэффициентами.

Базовыми величинами в формуле (2.1) являются теплоты (энтальпии) образования реагентов и продуктов.Теплотой (энтальпией) образования соединения называется тепловой эффект реакции, в ходе которой образуется 1 моль этого соединения из простых веществ, находящихся в термодинамически устойчивых фазах и модификациях 1) . Например, теплота образования воды в парообразном состоянии равна половине теплоты реакции, выражаемой уравнением: 2Н 2 (г) + О 2 (г) = 2Н 2 О (г). Размерность теплоты образования - кДж/моль.

В термохимических расчётах теплоты реакций, как правило, определяются для стандартных условий, для которых формула (2.1) приобретает вид:

rН ° 298 = (С rН ° 298,обр,С + d rН ° 298,обр,D) - (а rН ° 298,о6р,A + b rН ° 298, обр,В) (2.2)

где rН° 298 - стандартная теплота реакции в кДж (стандартность величины указывается верхним индексом "О") при температуре 298К. а rН° 298,обр. - стандартные теплоты (энтальпии) образования соединений также при температуре 298К. Значения rН°298,обр. определены для всех соединений и являются табличными данными. 2)

Пример 2.1. Расчёт стандартного теплового эффекта реакции, выраженной уравнением: СаСО 3 (т) =СаО(т) + СО 2 (г).

В соответствии со следствием из закона Гесса записываем:

rН 0 298 = (rН ° 298,обр,С аО + rН ° 298,обр.СО2) - rН° 298,обр,СаСО3

Подстановка в записанную формулу табличных значений стандартных теплот образования соединений приводит к следующему результату:

rН° 298 = ((-635,1) + (-393,51)) - (-1206) = 177,39 кДж.

Как видно, rН° 298 > 0, что указывает на эндотермический характер данной реакции.

В термохимии тепловые эффекты принято указывать в уравнениях реакций. Такие уравнения с обозначенным тепловым эффектом называются термохимическими.

Термохимическое уравнение рассматриваемой реакции записывается:

СаСО3(т) = СаО(т) + СО 2 (г); rН° 298 = 177,39 кДж.

Пример 2.2. Расчёт стандартной теплоты реакции выраженной уравнением :

4NH 3(г) + 5О 2 (г) = 4NO(г) + 6Н 2 О(г).

Согласно следствию из закона Гесса записываем 3) :

rН° 298 = (4rН° 298 ,обр. N О + 6rН ° 298,обр, H 2 O) - 4rН° 298 ,об, NH 3

Подставив табличные значения стандартных теплот образования соединений, представленных в формуле, получим:

rН° 298 = (4(90,37) + 6(-241,84)) - 4(-4б,19) = - 904.8 кДж.

Отрицательный знак теплоты реакции указывает на экзотермичность процесса.

Записываем термохимическое уравнение данной реакции

4NH3(г) + 5О 2 (г) = 4NO(г) + 6Н 2 О(г); rН° 298 = - 904,8 кДж

_______________________________________________________________________________

1) Состояния веществ в уравнениях реакций указываются с помощью буквенных индексов: (к) - кристаллическое, (т) - твёрдое, (ж) - жидкое, (г) - газообразное, (р) - растворённое.

2) По определению, rН° 298 ,обр. простых веществ равны нулю.

3) Н° 298 ,обр,О2 в формуле не фигурирует ввиду её равенства нулю.


Тепловой эффект в термохимическом уравнении относится к количествам веществ, обозначенным стехиометрическими коэффициентами. Так, в рассмотренном примере 2.2.запись rН° 298 = - 904,8 кДж означает, что такое количество теплоты выделяется, если взаимодействуют 4 моля NНз с 5 молями О 2 , в результате чего образуется 4 моля NO и 6 молей Н 2 О. Если же количества участников реакции будут иными, другим будет и значение теплового эффекта.

Пример 2.3. Расчёт теплоты реакции, рассмотренной в. примере 2.2., если:

а) в реакции участвуют 2 моля О 2 ;

Ь) в реакции участвуют 34г. NН з;

с) в реакции образуется 11,2л. NO.

Пусть х - неизвестное значение теплового эффекта, которое находится из следующих пропорций:

а) Решается пропорция: 2/5 = х (-904,8). Откуда х = 2(-904,8)/5 = - 361,92 кДж.

b) По массе 1 моль NH 3 равен 17г. (масса 1 моля в граммах численно равна сумме атомных масс). Следовательно, число молей NH 3 , участвующих в реакции, равно:

п = 34/17 = 2. Согласно этому составляем пропорцию: 2/4 = х/(-904,8).
Откуда х = 2(-904,8)/4
= - 452,4 кДж.

с) В соответствии с законом Авогадро, 1 моль любого газа при нормальных условиях занимает объём 22,4 литра. Поэтому число молей NO образующихся в реакции, равно:

п = 11,2/22,4 = 0,5 . Составляем пропорцию: 0,5/4 = х/(-904,8). Откуда х = 0,5(-904,8)/4 = -113,1 кДж.

Тепловые эффекты реакций конечно же зависят от условий их протекания, однако эта за­висимость выражена слабо. В интервале температур и давлений, имеющем практическое значение, изменение величины теплоты реакций, как правило, не превышает 5%. Поэтому в большинстве термохимических расчётов для любых условий величину теплоты реакции принимают равной стандартному тепловому эффекту.

Энергия Гиббса химической реакции.

(Задачи №№21-40)

Энергией Гиббса реакции называется изменение энергии Гиббса rG при протекании химической реакции. Так как энергия Гиббса системы С = Н - ТS, её изменение в процессе определяется по формуле:

rG = rН –ТrS. (3.1)

где Т - абсолютная температура в Кельвинах.

Энергия Гиббса химической реакции характеризует возможность её самопроизвольного протекания при постоянном давлении и температуре при р, Т=соnst). Если rG < 0, то реакция может протекать самопроизвольно, при rG > 0 самопроизвольное протекание реакции невозможно, если же rG = 0, система находится в состоянии равновесия.

Для расчёта энергии Гиббса реакции по формуле (3.1) отдельно определяются rН и rS. При этом в большинстве случаев используется слабая зависимость величин изменения энтальпии rН и энтропии rS от условий протекания реакции, т.е. пользуются приближениями:

= rН° 298 и rS = rS° 298 . (3.2)

Стандартную теплоту реакции rН° 298 определяют, используя следствие из закона Гесса по уравнению (2.2), а стандартную энтропию реакции аА + bВ = сС + dD рассчитывают по формуле:

rS° 298 = (сS° 298, С + dS° 298, D) - (aS° 298 , А + bS° 298,B) (3.3)

где rS° 298 - табличные значения абсолютных стандартных энтропии соединений в Дж/(мольК), а rS° 298 - стандартная энтропия реакции в Дж/К.

Пример 3.1. Расчёт энергии Гиббса реакции, выраженной уравнением

4NH 3 (г) + 5О 2 (г) = 4 NO(г) + 6Н 2 О(г) при давлении 202.6 кПа и температуре 500°С (773К).

Согласно условию, реакция протекает при практически реальных значениях давления и температуры, при которых допустимы приближения (3.2), т.е.:

rН 773 = rН ° 298 = -904.8 кДж = - 904800 Дж. (см. пример 2.2). а rS 773 = rS ° 298 . Значение стандартной энтропии реакции, рассчитанной по формуле (3.3), равно: rS° 298 =(4S° 298 , N 0 +6S° 298, H 20)- (4S° 298 , NH 3 + 5S° 298,О2)= (4 * 210,62 + 6 * 188,74) - (4 * 1O92,5 + 5 * 205,03) = 179,77Дж/К

После подстановки значений rН° 298 и rS° 298 в формулу (3.1) получаем:

rG 773 = rН773 - 773 rS 773 = Н ° 298 - 773 rS °298 =

= - 904800 – 773 * 179,77 = 1043762 Дж = - 1043,762 Кдж

Полученное отрицательное значение энергии Гиббса реакцииG 773 указывает на то, что данная реакция в рассматриваемых условиях может протекать самопроизвольно.

Если реакция протекает в стандартных условиях при температуре 298К, расчёт её энергии Гиббса (стандартной энергии Гиббса реакции) можно производить аналогично расчёту стандартной теплоты реакции по формуле, которая для реакции, выраженной уравнением аА + ЬВ = сС + dD, имеет вид:

rG ° 298 = (с rG ° 298,обр,С + drG ° 298.обр, D) – (аrG ° 298.обр A + b rG° 298 ,обр,в ) (3.4)

где rG ° 298.обр - стандартная энергия Гиббса образования соединения в кДж/моль (табличные значения) - энергия Гиббса реакции, в которой при температуре 298К образуется 1 моль данного соединения, находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии 4) , а rG ° 298 - стандартная энергия Гиббса реакции в кДж.

Пример 3.2. Расчёт стандартной энергии Гиббса реакции по уравнению:

4NH 3 + 5О 2 = 4 NO + 6Н 2 О

В соответствии с формулой (3. 4) записываем 5) :

rG° 298 = (4 rG° 298, NO + 6 rG° 298,.H2O) –4 rG° 29 8., NH3

После подстановки табличных значений r 298.обр получаем:

rG° 298 = (4(86, 69) + 6(-228, 76)) - 4 (-16, 64) = -184,56 кДж.

По полученному результату видно, что так же, как и в примере 3.1 , в стандартных условиях рассматриваемая реакция может протекать самопроизвольно.

По формуле (3.1) можно определить температурной диапазон самопроизвольного протекания реакции. Так как условием самопроизвольного протекания реакции является отрицательность
rG (rG < 0), определение области температур, в которой реакция может протекать самопроизвольно, сводится к решению относительно температуры неравенства (rН – ТrS) < 0.

Пример 3.3. Определение температурной области самопроизвольного протекания реакции СаО 3 (т) = СаО (т) + СО 2 (г).

Находим rН и rS:

rН = rН° 298 = 177,39 кДж = 177 390 Дж (см. пример 2.1)

rS = rS° 298 = (S° 298 . СаО + S° 298. СО 2 ) - S° 298. СО3 = (39.7+213.6) – 92.9=160.4 Дж/K

Подставляем значения rН и, rS в неравенство и решаем его относительно Т:

177390 Т * 160,4<0, или 177390 < Т * 160,4, или Т > 1106. Т.е. при всех температурах, больших 1 106К, будет обеспечиваться отрицательность rG и, следовательно, в данном температурном диапазоне будет возможным самопроизвольное протекание рассматриваемой реакции.

Химическая кинетика.

(Задачи №№41 - 60)

Как уже отмечалось, химическая кинетика - это раздел химии, изучающий скорости реакций и влияние на них различных факторов.

В гомогенном (однофазном) процессе реакция протекает во всём объёме системы и её скорость характеризуется изменением концентрации любого реагента, или любого продукта в единицу времени. Различают среднюю скоростьV ср = ±rС/rt, где rC - изменение молярной концентрации за период времени rt , и истинную скорость в момент времени t, представляющую собой производную от концентрации по времени: V = ±dС/dt. Скорость каждой конкретной реакции в отсутствие катализатора зависит от концентраций реагентов и от температуры . Скорость гетерогенных реакций, протекающих на межфазной поверхности раздела, зависит также от величины этой поверхности.

_______________________________________________________________________________________

4) Согласно определению, стандартная энергия Гиббса образования простых веществ равна нулю.

5) rG° 298, O 2 в выражении не фигурирует ввиду её равенства нулю.


Влияние концентраций реагентов на скорость реакций устанавливается законом дейст­вующих масс: при фиксированной температуре скорость реакции пропорциональна произве­дению концентраций реагентов в степенях, равных стехиометрическим коэффициентам. Для реакции аА + bВ = сС + dD математическое выражение закона действующих масс, называемое кинетическим уравнением реакции, записывается:

V = kС А а С B b (4.1)

где k - коэффициент пропорциональности, носящий название константы скорости, С A и С B - молярные концентрации реагентов, а и b - их стехиометрические коэффициенты. Сумма показателей степеней в кинетическом уравнении называется порядком реакции.

Пример 4.1. Кинетическое уравнение реакции 2Н 2 (г) + О 2 (г) = 2Н 2 О(г) записывается :

V = kС H 2 2 С О2 . Теоретический порядок данной реакции равен трём.

В кинетических уравнениях реакций концентрации веществ в конденсированном со­стоянии ввиду их неизменности не указываются. Эти постоянные концентрации в качестве составных частей входят в константу скорости.

Пример 4.2. Кинетическое уравнение гетерогенной реакции, протекающей согласно уравнению 2С(т) + О 2 (г) = 2СО(г), имеет вид: V = кС О2 - реакция первого порядка.

Согласно закону действующих масс, скорость реакции изменяется при изменении концентраций реагентов. *

Пример 4.3. Расчёт изменения скорости реакции 2Н2(г) + О 2 (г) = 2Н 2 О(г) при уменьшении концентрации водорода в 2 раза.

Согласно уравнению (4.1). начальная скорость реакции V 1 = kС H 2 2 /С О2 , а скорость реакции при концентрации водорода в 2 раза меньшей определяется соотношением:

V 2 = k(С H 2 /2) 2 С О2 - В итоге имеем V 2 /V 1 = 1/4, т.е. скорость реакции уменьшается в 4 раза.

В реакциях с участием газов изменение концентраций реагентов и, следовательно, изме­нение скорости легче всего осуществить изменением объёма системы путём изменения давления. Согласно уравнению Менделеева - Клапейрона, объём газа уменьшается, а его молярная концен­трация увеличивается во столько раз, во сколько раз увеличивается давление.

Пример 4.4. Расчёт изменения скорости реакции 2Н 2 (г) + О 2 (г) = 2Н 2 О(г) при увеличении давления в 2 раза.

Скорость реакции до увеличения давления V 1 = kС H 2 2 /С О2 - При увеличении давления в 2 раза объём системы уменьшается в 2 раза, в связи с чем концентрация каждого газа увеличивается в 2 раза и становится равной для водорода - 2 С Н2 , для кислорода - 2С О2 - В новых условиях скорость реакции будет выражаться кинетическим уравнением: V 2 = k(2С H 2) 2 2 С О2 - Отношение скоростей V 2 /V 1 = 8, т.е. в результате увеличения давления в 2 раза скорость реакции увеличивается в 8 раз.

Зависимость скорости химических реакций от температуры устанавливается правилом Вант - Гоффа: при увеличении температуры на каждые 10 градусов скорость большинства химических реакций увеличивается в 2 - 4 раза. Соответственно, при таком же уменьшении температуры скорость реакций уменьшается в такое же число раз. Математически правило Вант

Гоффа записывается:

V 2 = V 1 y (Т2 – T 1)/10 или k 2 = k 1 y (Т2 – T 1)/10 (4.2)

где V 2 и V i , k 2 , k 1 - соответственно, скорости и константы скоростей реакции при температурах Т 2 и Т 1 а у= 2 - 4 - температурный коэффициент скорости реакции.

Пример 4.5. Расчётшменения скорости реакции, температурный коэффициент которой равен 3, при уменьшении температуры на 30 градусов.

В соответствии с уравнением (4.2). отношение скоростей V 2 /V 1 = З -30/10 = 1/27. т.е. при уменьшении температуры на 30 градусов скорость реакции уменьшается в 27 раз.

Химическое равновесие.

(Задачи №№61-80)

Химическое равновесие устанавливается в обратимых реакциях - в реакциях, которые могут протекать как в прямом, так и в обратном направлении. Если реакция аА + bВ ó cC +dD) обратима, это означает, что реагенты А и В способны превращаться в продукты С и D (прямая реакция), а продукты С и D в свою очередь могут, реагируя между собой, вновь образовывать исходные вещества А и В (обратная реакция). Термодинамическим условием химического равновесия является неизменность энергии Гиббса реакции, т.е. rG = 0, а кинетическим условием равновесия - равенство скоростей прямой (V 1) и обратной (V 2) реакции: V 1 = V 2

Так как в состоянии химического равновесия и прямая, и обратная реакции протекают с одинаковыми скоростями, концентрации реагентов и продуктов во времени не изменяются. Эти не изменяющиеся во времени концентрации называются равновесными. Равновесные концентрации, в отличие от неравновесных, изменяющихся в ходе реакции, принято обозначать особым образом, а именно, формулой вещества, заключённой в квадратные скобки. Например, записи [Н 2 ], означают, что речь идёт о равновесных концентрациях водорода и аммиака.

При заданной температуре соотношение равновесных концентраций реагентов и продуктов есть величина постоянная и характерная для каждой реакции. Это соотношение количественно характеризуется величиной константы химического равновесия Кс, равной отношению произведения равновесных концентраций продуктов к произведению равновесных концентраций реагентов, возведённых в степени, равные их стехиометрическим коэффициентам. Для обратимой реакции аА+ЬВ ó cС+dD выражение Кс имеет вид:

Кс = ([С1 с [D] d)/([А] а [В] ь) (5.1)

Пример 5.1. Выражение константы химического равновесия обратимой гомогенной реакции N 2 (г)+ЗН 2 (г) ó 2NH 3 (г)

Согласно формуле (5.1) константа химического равновесия рассматриваемой реакции записывается: Кс =[ NНз] 2 / ([Н 2 ] 3).

Так же как в кинетических уравнениях реакций, в выражениях констант равновесия концентрации веществ в конденсированном состоянии, ввиду их постоянства, не записы­ваются.

Пример 5.2. Выражение константы химического равновесия гетерогенной обратимой реакции Fе 3 0 4 (т) + 4СО(г) ó ЗFе(т) + 4СО 2 (г).

Константа химического равновесия данной реакции с учётом вышеотмеченного записывается: Кс = [СО2] 4 /[СО] 4 .

Для реакций с участием газов константа химического равновесия может быть выражена не только через равновесные концентрации, но и через равновесные парциальные давления газов 6) . . В этом случае символ константы равновесия "К" индексируется не символом концентрации "с", а символом давления "р".

Пример 5.3. Константа химического равновесия гетерогенной обратимой реакции Fе 3 0 4 (т) + 4СО(г) ó ЗFе(т) + 4СО 2 (г), выраженная через равновесные парциальные давления газов в равновесной газовой смеси.

В результате замены равновесных концентраций равновесными парциальными давления­ми газов, получаем следующее выражение константы химического равновесия: Кр=Рсо 2 4 /Рсо 4 , где Рсо 2 и Рсо - соответственно, парциальные давления диоксида углерода СО 2 и.монооксида углерода СО.

Поскольку парциальное давление газа и его концентрация связаны между собой соотношением Р i =С i RТ, где Р i и С i - соответственно, парциальное давление и концентрация i-го газа, Кс и Кр, в свою очередь, связаны друг с другом простым соотношением:

Кр=Кс(RТ) r n (5.2)

где rn - разность между суммой стехиометрических коэффициентов продуктов реакции и суммой стехиометрических коэффициентов реагентов.

Пример 5.4. Взаимосвязь Кр и Кс обратимой реакции, выраженной уравнением:

N 2 (г)+ЗН 2 (г) ó 2NH 3 (г)

Записываем выражения Кр и Кс: Кр=Р NH 3 2 / Р N 2 Рн 2 3);

Так как rn = 2 - (1+3) = -2, то в соответствии с (5.2) Кр=Кс(RТ) -2 или иначе Кс=Кр(RТ) 2 .

________________________________________________________________________________

6) Парциальное давление газа в газовой смеси представляет собой часть от общего давления смеси, приходящуюся на долю данного газа.

Численное значение константы равновесия Кр легко определяются термодинамически по формуле:

rGº т = -2,З RТ lgКр (5.3)

где rGº т - стандартная энергия Гиббса реакции при температуре Т рассчитывается по формуле (3.1) или (3.4).

Формула (5.3) используется для расчёта констант равновесия реакций, протекающих с участием газов. При необходимости, используя соотношение (5.2), для такого рода реакций можно рассчитать значение Кс.

Пример 5.5. Расчёт константы равновесия реакции СаСОз(т) ó СаО(т) + СО2(г) при температуре 500°С (773К).

Так как один из участников обратимой реакции (СО 2) - газ, для расчёта константы равновесия используем формулу (5.3). Поскольку температура не является стандартной, rG 0 773 определяем по формуле (3. 1): rG 0 773 = Н° 773 – 773 rS 773 . Необходимые для определения G 0 773 значения Н є 773 и rS 773 возьмём из ранее рассмотренного примера (3.3), а именно: rН 0 773 = rН 0 298 =177390 Дж и S° 773 = rS° 298 =160,4 Дж/К. Соответственно этим значениям rG 0 773 = 177390 –773 773 160.4 =53401 Дж. Далее согласно формуле (5.3) получаем: lgКр = - rG° 773 /(2,ЗRТ) = -53401/(2,3 * 8,314 * 773) = -3,6.

Записываем выражение константы равновесия 7) и её численное значение: Кр=Рсо 2 =10 -3,6 . Столь малое значение Кр свидетельствует о том, что в рассматриваемых условиях прямая реакция практически не протекает (сопоставьте данный вывод с результатом расчёта в примере (3. 3).

Из рассмотренного примера (5.5) вытекает, что численное значение константы химиче­ского равновесия характеризует степень превращения реагентов в продукты: если Кр(Кс)>> 1, в равновесной системе преобладают продукты, те. обратимая реакция преимущественно протекает в прямом направлении и, наоборот, если Кр(Кс)<<1, более выраженной является обратная реакция и степень превращения реагентов в продукты невелика.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

ОПРЕДЕЛЕНИЕ

Как и другие термодинамические уравнения, связывает между собой термодинамические параметры систем, представленные посредством функций – термодинамических потенциалов (таких как энтальпия, или ).

Однако это уравнение имеет и более интересное, специфичное применение: оно позволяет определить, возможно ли вообще (а если возможно – при каких условиях?) осуществить тот или иной термодинамический процесс. Чаще всего его используют в химии, чтобы узнать, будет ли протекать химическая реакция, а может, реагенты для этого нужно охладить или нагреть? Уравнение Гиббса применяется для изобарно-изотермических процессов, а именно такими и являются и фазовые переходы.

Уравнение имеет вид:

— изменение энтальпии системы, Т – её абсолютная температура, S – энтропия. – свободная энергия Гиббса, которую еще называют «изобарно-изотермический потенциал».

Проанализировать уравнение будет удобнее, записав его в несколько другом виде:

Энтальпия – сумма внутренней энергии системы и работу, которую может выполнить система при p. Грубо говоря, энтальпия – это полное содержание энергии в системе. Энтропийный фактор – та часть энергии системы, которая не может быть потрачена на полезную работу, а может только рассеяться в окружающую среду в виде тепла, увеличивая хаотичность системы. Энергия Гиббса — максимальная полезная работа, которую может выполнить система.

Термодинамический процесс осуществим, если — в этом процессе система будет переходить в состояние равновесия . При title="Rendered by QuickLaTeX.com" height="13" width="64" style="vertical-align: 0px;"> процесс не разрешен – если в конечном состоянии энергия, которая могла бы уйти на полезную работу, возросла в сравнении с начальным состоянием, значит, она вообще не тратилась при осуществлении процесса. Значит, и процесс-то этот невозможен.

Величина свободной энергии Гиббса

Величину свободной энергии Гиббса может определять как фактор энтальпии, так и энтропии. Рассмотрим это на примерах химических реакций:

1) , title="Rendered by QuickLaTeX.com" height="13" width="76" style="vertical-align: 0px;"> – в этом случае — реакцию можно провести при любой температуре. Такой расклад характерен, например, для горения .

2) title="Rendered by QuickLaTeX.com" height="13" width="67" style="vertical-align: 0px;">, – изменение энергии Гиббса больше нуля. Реакция однозначно не осуществима.

3) , – реакция возможна при низкой температуре. Если температура в будет небольшой, энтропийная составляющая будет возрастать медленно, и энергия Гиббса будет уменьшатся. Именно так проходит процесс синтеза аммиака без катализатора: . Правда, скорость реакции при этом мала, и в промышленности применяют метод Габера – с катализатором и при высоких температурах.

4) title="Rendered by QuickLaTeX.com" height="17" width="158" style="vertical-align: -4px;"> – реакция возможна при высокой температуре. Тогда отрицательный энтропийный фактор уравновесит положительное изменение энтальпии, и энергия Гиббса уменьшается. Если нагреть тетраоксид азота (окислитель ракетного топлива), он разложится на окись азота, важный трансмиттер газов в живых организмах: .

Изменение энергии Гиббса указывает на термодинамическую возможность реакции – но это не значит, что реакция обязательно будет (не)осуществима в реальных условиях. На практике на возможность протекания реакции влияют и кинетические факторы: концентрация реагентов, контактная поверхность между фазами, наличие катализаторов.

Примеры решения задач

ПРИМЕР 1

Задание Реакция протекает при температуре 298 К. В результате образуется вода в жидкой фазе. Изменение энергии Гиббса кДж. За счет энтальпийного или энтропийного фактора протекает реакция?
Решение Оценим, как изменяется энтропия реагентов (для удобства примем количество вещества кислорода 1 моль). На входе мы имеем объем реагентов:

В то же время объем образовавшейся (в качестве единицы используем граммы, единицы объема – литры):

Так как объем вещества при изобарно-изотермическом процессе значительно уменьшается, то уменьшается и энтропия.

Исходя из уравнения Гиббса:

— если изменение и энергии Гиббса, и энтальпии отрицательны, то протекание реакции определяет изменение энтальпии.

Одной из важнейших задач, решаемых термодинамикой, является установление принципиальной возможности (или невозможности) самопроизвольного протекания химического процесса.

Как указывалось ранее, протеканию химического процесса благоприятствует повышение энтропии системы. Повышение энтропии достигается разобщением частиц, разрывом химических связей, разрушением кристаллических решеток, растворением веществ и т.д. Однако все эти процессы неизбежно сопровождаются повышением энтальпии системы, что препятствует протеканию процесса. Очевидно, что для решения вопроса о принципиальной возможности протекания химического процесса необходимо одновременно учесть изменение и энтропии, и энтальпии системы. При постоянной температуре и давлении для этой цели используется термодинамическая функция, называемая свободной энергией Гиббса (иногда просто энергией Гиббса). Свободная энергия Гиббса (G) cвязана с энтальпией и энтропией следующим уравнением:

Изменение энергии Гиббса при переходе системы из начального состояния в конечное определяется соотношением:

ΔG = ΔH - TΔS

Поскольку уравнение справедливо для процессов, протекающих при постоянных температуре и давлении, функцию G называют изобарно-изотермическим потенциалом . В полученном уравнении величина ΔН оценивает влияние энтальпийного фактора, а величина ТΔS - энтропийного фактора на возможность протекания процесса. По своему физическому смыслу свободная энергия Гиббса - это та часть ΔН, которая при определенных условиях может быть превращена в работу, совершаемую системой против внешних сил. Остальная часть ΔН, равная ТΔS, представляет "несвободную" энергию, которая идет на повышение энтропии системы и в работу превращена быть не может. Свободная энергия Гиббса - это своеобразный потенциал, определяющий движущую силу химического процесса. Подобно физическим потенциалам (электрическому, гравитационному) энергия Гиббса уменьшается по мере самопроизвольного протекания процесса до тех пор, пока не достигнет минимального значения, после чего процесс прекратится.

Пусть в системе при постоянных давлении и температуре cамопроизвольно протекает какая-то реакция (неравновесный процесс). В этом случае ΔH < TΔS, соответственно ΔG <0. Таким образом, изменение функции Гиббса может служить критерием при определении направления протекания реакций: в изолированной или закрытой системе при постоянной температуре и давлении самопроизвольно протекают реакции, для которых изменение свободной энергии Гиббса отрицательно (ΔG < 0).



Пусть протекающая в системе реакция обратима. Тогда при заданных условиях прямая реакция принципиально осуществима, если ΔG < 0, а обратная - если ΔG > 0; при ΔG = 0 система будет находиться в состоянии равновесия. Для изолированных систем ΔН = 0, поэтому ΔG = - TΔS. Таким образом, в изолированной системе самопроизвольно протекают процессы, приводящие к повышению энтропии (второй закон термодинамики).

Поскольку в уравнение энергии Гиббса входит энтальпия системы, определить ее абсолютное значение невозможно. Для расчета изменения свободной энергии, отвечающего протеканию той или иной реакции, используют энергии Гиббса образования соединений, участвующих во взаимодействии. Энергия Гиббса образования соединения (ΔG f) - это изменение свободной энергии, соответствующее синтезу моля данного соединения из простых веществ. Энергии Гиббса образования соединений, отнесенные к стандартным условиям, называются стандартными и обозначаются символом . Значения приведены в справочной литературе; их можно также вычислить по значениям энтальпий образования и энтропий соответствующих веществ.

Пример №1. Требуется рассчитать для Fe 3 O 4 , если известна энтальпия образования этого соединения ΔН о f (Fe 3 O 4) = -1117,13 кДж/моль и энтропии железа, кислорода и Fe 3 O 4 , равные 27,15; 205,04 и 146,19 Дж/моль. К. Соответственно

(Fe 3 O 4) = (Fe 3 O 4) - T· ,

где Δ - изменение энтропии при протекании реакции: 3Fe + 2O 2 = Fe 3 O 4

Изменение энтропии рассчитывается по следующему уравнению:

Δ = (Fe 3 O 4) - =

146,19 - (3 . 27,15 + 2 . 205,04) = -345,3(Дж/моль . К);

Δ = -0,34534 кДж/моль·К

(Fe 3 O 4) = -1117,13 - 298(-0,34534) = -1014,2 (кДж/моль)

Полученный результат позволяет сделать вывод, что реакция принципиально возможна при стандартных условиях. В данном случае энтальпийный фактор благоприятствует протеканию реакции ( < 0), а энтропийный - препятствует (Т < 0), но не может увеличить до положительной величины



Поскольку G является функцией состояния, то для реакции: aA + bB = dD + eE изменение энергии Гиббса можно определить по уравнению

= Σi (пр) - Σj (реаг)

Пример №2. Оценим принципиальную возможность получения озона при взаимодействии азотной кислоты с кислородом (условия стандартные) по уравнению:

4HNO 3 (ж) + 5O 2 (г) = 4O 3 (г) + 4NO 2 (г) + 2H 2 O(ж)

Рассчитаем изменение энергии Гиббса в стандартных условиях:

= - =

4·162,78 + 4·52,29 - = 1179,82 (кДж)

Самопроизвольное протекание реакции при стандартных условиях принципиально невозможно. В то же время диоксид азота может быть окислен озоном до азотной кислоты, так как для обратной реакции значение ΔG отрицательно.

ХИМИЧЕСКАЯ КИНЕТИКА

ПЛАН

ВВЕДЕНИЕ 2

ЭНЕРГИЯ ГИББСА 3

ЗАКЛЮЧЕНИЕ 14

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 15

ВВЕДЕНИЕ

В своем реферате я расскажу об энергии Гиббса.

Гиббс Джозайя Уиллард (1839-1903), американский физик-теоретик, один из создателей термодинамики и статистической механики. Разработал теорию термодинамических потенциалов, открыл общее условие равновесия гетерогенных систем - правило фаз, вывел уравнения Гиббса - Гельмгольца, Гиббса - Дюгема, адсорбционное уравнение Гиббса. Установил фундаментальный закон статистической физики - распределение Гиббса. Предложил графическое изображение состояния трехкомпонентной системы (треугольник Гиббса). Заложил основы термодинамики поверхностных явлений и электрохимических процессов. Ввел понятие адсорбции.

ЭНЕРГИЯ ГИББСА

В начале своей работы я думаю необходимо представить основные понятия теории Гиббса.

ПРАВИЛО ФАЗ ГИББСА в термодинамике: число равновесно сосуществующих в какой-либо системе фаз не может быть больше числа образующих эти фазы компонентов плюс, как правило, 2. Установлено Дж. У. Гиббсом в 1873-76.

ГИББСА ЭНЕРГИЯ (изобарно-изотермический потенциал, свободная энтальпия), один из потенциалов термодинамических системы. Обозначается G , определяется разностью между энтальпией H и произведением энтропии S на термодинамическую температуру Т : G = H - T·S . Изотермический равновесный процесс без затраты внешних сил может протекать самопроизвольно только в направлении убывания энергии Гиббса до достижения ее минимума, которому отвечает термодинамическое равновесное состояние системы. Названа по имени Дж. У. Гиббса.

ПОТЕНЦИАЛЫ ТЕРМОДИНАМИЧЕСКИЕ, функции объема, давления, температуры, энтропии, числа частиц и других независимых макроскопических параметров, характеризующих состояние термодинамической системы. К потенциалам термодинамическим относятся внутренняя энергия, энтальпия, изохорно-изотермический потенциал (Гельмгольца энергия), изобарно-изотермический потенциал (Гиббса энергия). Зная какие-либо потенциалы термодинамические как функцию полного набора параметров, можно вычислить любые макроскопические характеристики системы и рассчитать происходящие в ней процессы.

РАСПРЕДЕЛЕНИЕ ГИББСА каноническое, распределение вероятностей различных состояний макроскопической системы с постоянным объемом и постоянным числом частиц, находящейся в равновесии с окружающей средой заданной температуры; если система может обмениваться частицами со средой, то распределение Гиббса называется большим каноническим. Для изолированной системы справедливо Гиббса распределение микроканоническое, согласно которому все микросостояния системы с данной энергией равновероятны. Названо по имени открывшего это распределение Дж. У. Гиббса.

Реакции присоединения радикалов к непредельным соединениям лежат в основе современной технологии получения полимеров, сополимеров и олигомеров. Эти реакции протекают при крекинге углеводородов, галоидировании олефинов, окислении непредельных соединений. Они широко используются в синтезе разнообразных соединений и лекарственных препаратов. Реакции присоединения атомов водорода и гидроксильных соединений к непредельным и ароматическим соединениям сопровождают фотолиз и радиолиз органических материалов и биологических объектов.

рвется двойная С=С-связь и образуется связь С X. Как правило, образующаяся
 -связь прочнее рвущейся  -С С-связи, и поэтому реакция присоединения экзотермична. Это четко видно из сравнения энтальпии реакции Н и прочности образующейся связи D (EtX) в табл. 1.

Другой важный фактор, влияющий на энтальпию реакции, энергия стабилизации образующегося радикала XCH 2 C  H 2 Y: чем больше эта энергия, тем больше теплота присоединения радикала X  к олефину. Энергию стабилизации можно охарактеризовать, например, разницей прочности связей C H в соединениях Pr H и EtYHC H. Ниже приведены данные, характеризующие вклад энергии стабилизации радикала CH 3 CH 2 C  H 2 Y, образующегося в результате присоединения метильного радикала к мономеру CH 2 =CHY, в энтальпию этой реакции.

Таблица 1.

Энтальпия, энтропия и энергия Гиббса присоединения атомов и радикалов X к этилену.

X

H ,

кДж моль  1

S ,

Дж моль  1 К  1

G (298 K),

кДж моль  1

H

Cl

C H 3

Me 2 C H

PhC H 2

N H 2

HO

CH 3 O

HO 2

Видно, что чем больше энергия стабилизации радикала, тем меньше энтальпия реакции.

Все реакции присоединения протекают с уменьшением энтропии, т. к. происходит соединение двух частиц в одну (см. табл. 8.1). В силу этого для реакций присоединения энергия Гиббса, и при достаточной высокой температуре экзотермическая реакция присоединения является обратимой, т. к. G = H T S .

На любой процесс (реакцию) действуют два фактора:

Энатльпийный (экзо- или ендо) – Δ H ;

Энтропильный (ТΔS ).

При объединении этих двух факторов получаем:

ΔН – ТΔS = ΔG

G = H – TS – Энергия Гиббса.

Физический смысл Энергии Гиббса:

Вывод: состояние термодинамического равновесия чрезвычайно устойчиво, так как при постоянстве Р, Т система выйти из равновесного состояния не может, так как выход равен возрастанию энергии Гиббса.

Чтобы система вышла из состояния равновесия необходимо изменить какие-либо внешние факторы (Р, Т, концентрация и так далее).

Есть понятие стандартное состояние Гиббса:

ΔG f 0 298 [кДж / моль] – справочная величина.

ΔG 298 = Σn i Δ * ΔG f 0 298 – Σn j Δ * ΔG f 0 298

продукт реагент

большинство процессов протекает при t более высоких чем стандартная (298). Для пересчета энергии Гиббса на более высокие температуры необходимы справочные данные по теплоемкостям, данные представленные в виде зависимости от температуры.

В справочниках эти данные обычно представлены в виде степенного ряда.

C p 0 = a + bT + cT 2 + c’ Т -2

где a , b , c , c ’ – для каждого вещества свои.

ΔC p 0 = Δa + ΔbT + ΔcT 2 + Δc ’Т -2

Где Δa , Δb , Δc , Δc ’ - будучи функциями состояния, рассчитываются по формулам:

Δa = Σn i а - Σn j а

продукт реагент

Δb = Σn i b - Σn j b

продукт реагент

Δc = Σn i c - Σn j c

продукт реагент

Термодинамика фазовых равновесий. Фазовые равновесия в гетерогенных системах. Правило фаз Гиббса.

К фазовым равновесиям относятся переходы типа:

    Твердая фаза в равновесии с жидкостью (плавление – кристаллизация);

    Жидкая фаза в равновесии с паром (испарение – конденсация);

    Твердая фаза в равновесии с паром (возгонка – сублимация).

Основные понятия правила фаз:

Фаза (Ф) – это часть системы, имеющая границы раздела с другими ее частями.

Компонент (к) – это химически однородная составляющая системы, обладающая всеми ее свойствами.

Число степеней свободы (С) – это число независимых переменных которые можно произвольно менять не меняя числа фаз в системе.

(С, Ф, К) С = К – Ф +2

Существует правило фаз Гиббса.

Различают однокомпонентные, двухкомпонентные, трехкомпонентные системы (К=1, К=2, К=3).

С min = 1 – 3 + 2 = 0

C max = 1 – 1 + 2 = 2

Для описания однокомпонентных систем выбрали координаты:

Р (давление насыщенного пара)

Т (температура)

dP / dT = ΔH ф.п. / (T ф.п. * ΔV )

эта зависимость сохраняется в силе для абсолютно всех фазовых переходов.

Р c

Тв. Ж. a

b Пар

Каждая линия диаграммы отвечает своему фазовому переходу:

Оb Тв. – Ж.

Оа Ж. - Пар

Ос Тв. - Пар

Поля диаграммы: твердая фаза, жидкая фаза, пар.

Т кр.: Пар – Газ

Поле фазы:

С = 2 (на полях С max )

C = 1 (на линиях)

Точка О – отвечает равновесию трех фаз: Тв. – Ж – Пар.

С = 0 – это значит, что нельзя менять ни температуру ни давление.

Остановимся теперь на химическом потенциале - величине, определяющей термодинамические характеристики не системы в целом, а одной молекулы в этой системе.

Если добавлять в систему молекулу за молекулой при постоянном давлении , то на добавление каждой новой частицы надо затратить в точности ту же работу, что на добавление любой предыдущей: объем системы будет расти, а плотность системы - и интенсивность взаимодействий в ней - меняться не будет. Поэтому термодинамическое состояние молекулы в системе удобно определять величиной свободной энергии Гиббса G, деленной на число молекул N,

m = G/N

называемой химическим потенциалом (а так как в жидкой или твердой фазе и невысоких давлениях F » G , то здесь m » F/N ). Если N означает не число молекул, а, как обычно, число молей молекул, то и m относится не к одной молекуле, а к молю молекул.

Химический потенциал - или, что то же самое, свободная энергия Гиббса в расчете на одну молекулу - нам пригодится во второй части сегодняшней лекции, когда речь пойдет о распределении молекул между фазами. Дело в том, что молекулы перетекают из той фазы, где их химический потенциал выше, в ту, где их химический потенциал ниже, - это понижает общую свободную энергию системы и приближает ее к равновесию. А в равновесии химический потенциал молекул в одной фазе равен химическому потенциалу тех же молекул в другой фазе.

В последнее время при изучении свойств пластифицированных систем были обнаружены экспериментальные факты, противоречащие общепринятым представлениям и в ряде случаев не получившие должного объяснения. Это касается термодинамики пластифицированных систем, определения температуры стеклования (Т с) и оценки свойств систем, содержащих относительно небольшие количества пластификатора. Факты эти имеют большое значение для практики и теории, они связаны с метастабильностью пластифицированных систем и с неправильным использованием некоторых методов изучения их свойств.

Известно, что все системы делятся на устойчивые или стабильные, неустойчивые или лабильные и метастабильные, которые наиболее распространены. Поэтому изучение теплофизических свойств метастабильных систем имеет большое значение.

Метастабильная система устойчива по отношению ко всем системам, бесконечно мало отличающимся от нее, но имеется по крайней мере одна система, по отношению к которой она неустойчива. Состояние А, обладающее наименьшей энергией Гиббса, является истинно устойчивым, а состояние Б, обладающее большей энергией Гиббса, - метастабильным состоянием по отношению к состоянию А. Однако для перехода системы из состояния Б в состояние А требуется преодолеть потенциальный барьер. Если энергия возмущения меньше потенциального барьера, то система остается в состоянии Б.

Стабильность таких систем зависит от соотношения времени релаксации (р) и времени опыта (оп); под временем опыта подразумевается не только время лабораторного опыта, но и время хранения и эксплуатации изделия. Если
р >> оп, то система может находиться в метастабильном состоянии неограниченное время и она ничем не отличается от истинно устойчивой системы. Поэтому к ней не следует применять термин "неравновесная". Наоборот, в настоящее время широко распространен термин "метастабильное равновесие". Система в состоянии А находится в истинном равновесии, а система в состоянии Б - в метастабильном равновесии.
Метастабильное состояние является типичным для полимерных систем вследствие очень большого размера макромолекул полимеров и значительных р. Такие системы, например, можно получить закалкой, т.е. быстрым охлаждением полимера или полимерной смеси до температуры значительно ниже их Т с. При этом не изменяется структура системы и сохраняется приданная ей при более высокой температуре структура. Это означает, что система "помнит" свое прошлое. Такие системы называют системами с "памятью". Исследованию их свойств посвящено много работ, разрабатывается термодинамика этих систем. Эти свойства зависят от предыстории систем. К системам с памятью относятся все полимеры и полимерные композиции, находящиеся при температуре намного ниже их Тс. Время релаксации происходящих в них процессов очень велико, в связи с чем стеклообразные полимеры при Т << Тс рассматривают как равновесные. К таким системам применимы законы классической термодинамики.

Большое значение имеет термодинамическое сродство полимера к пластификатору, которое оценивают теми же параметрами, что и сродство полимера к растворителям: величиной и знаком энергии Гиббса (G ) смешения параметром взаимодействия Флори-Хаггинса (1), вторым вириальным коэффициентом (А 2). Величину G можно определить двумя способами. Первый способ состоит в прямом определении G на основании экспериментальных данных по давлению пара пластификатора над пластифицированной системой или по давлению набухания. Пластификаторы являются труднолетучими жидкостями, поэтому измерение их малых давлений требует специальных методов. Метод эффузии, который для этой цели применяется, имеет много недостатков. Более точным является метод определения давления набухания, давно используемый при изучении свойств пластифицированных эфиров целлюлозы. Он был успешно применен при исследовании сродства вулканизаторов каучуков к различным растворителям.

Определение G пластифицированных полимеров можно осуществлять с помощью метода, предложенного для смесей полимеров. Для этого следует измерить G смешения полимера, пластификатора и их смесей с какой-либо низкомолекулярной жидкостью, неограниченно смешивающейся с ними. Энергию Гиббса смешения можно определять на основании данных по светорассеянию растворов. Этот метод, представленный Вуксом для системы жидкость- жидкость, впервые был использован для систем полимер-растворитель в работе.

Второй способ определения величины G состоит в расчете этого параметра на основании экспериментально измеренных энтальпии и энтропии смешения полимера с пластификатором. Ее рассчитывают по уравнению: G = H - TS. Энтальпию смешения рассчитывают по закону Гесса, как описано выше, энтропию смешения определяют на основании температурной зависимости теплоемкости пластифицированных систем, измеренной с помощью сканирующего калориметра. Этот метод заслуживает внимания. Однако в рамках классической термодинамики абсолютные значения энтропии можно получить только при экстраполяции экспериментальной температурной зависимости теплоемкости к абсолютному нулю. В работе это было сделано, а в работе использован приближенный способ расчета величин S 0 , когда все величины энтропии приняты без нулевых слагаемых. Это может привести к ошибкам. Из изложенного следует, что необходимо развивать различные методы, которые должны давать одинаковые результаты. Для этого необходимо результаты, полученные разными методами, сопоставлять и систематически обсуждать.

ЗАКЛЮЧЕНИЕ

В своей работе я рассмотрела энергию Гиббса и относящиеся к этой теории понятия. Я рассказала о термодинамические потенциалы, правила фаз, распределение Гиббса, энтальпию, энтропию и конечно саму энергию Гиббса.

Вклад Джозайи Уилларда Гиббса в науку имеет большое значение. Его труды и исследования послужили основой для научных разработок его последователей, а так же имеют практическое значение.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:

    Теплофизика метастабильных жидкостей. Свердловск, УНЦ АН СССР, 1987.

    Пригожин И., Дефей Р. Химическая термодинамика. Пер. с англ. Под ред. В.А. Михайлова. Новосибирск, Наука, 1966.

    Кубо Р. Термодинамика. Пер. с англ. Под ред. Д.М. Зубарева, Н.М. Плакиды. М. Мир, 1970.

    Тагер А.А. Высокомолекул. соед., 1988, т. А30, № 7, с. 1347.

    Тагер А.А. Физикохимия полимеров. М., Химия, 1978.

    Новикова Л.В. и др. Пласт. массы, 1983, № 8, с. 60.

    энергии Гиббса в следующей форме: изменение энергии Гиббса при образовании заданных... любого из термодинамических потенциалов: внутренней энергии U, энтальпии H, энергии Гиббса G, энергии Гельмгольца А при условии постоянства...

  1. Термодинамика химической устойчивости сплавов системы Mn-Si

    Дипломная работа >> Химия

    ... Энергии Гиббса реакций 2 и 3 описываются уравнениями температурной зависимости: Энергия Гиббса реакции 1 может быть найдена комбинированием энергий Гиббса ... атм. Подставляя в выражения для энергий смешения значения энергий Гиббса реакций (1) – (4), получаем...

  2. Коллоидная химия. Конспект лекций

    Конспект >> Химия

    Всегда >0. Внутренняя поверхностная энергия единицы поверхности больше поверхностной энергии Гиббса (*) на теплоту образования... , поэтому уравнение Гиббса -Гельмгольца(**), связывающее полную поверхностную энергию или энтальпию с энергией Гиббса в этом случае...


Top