Как найти внутреннюю энергию. Внутренняя энергия тела

Термодинамика как дисциплина сформировалась к середине 19-го столетия. Это произошло после открытия закона о сохранении энергии. Существует определенная связь между термодинамикой и молекулярной кинетикой. Какое место в теории занимает внутренняя энергия? Рассмотрим это в статье.

Статистическая механика и термодинамика

Исходной научной теорией о тепловых процессах стала не молекулярно-кинетическая. Первой была термодинамика. Она сформировалась в процессе изучения оптимальных условий применения теплоты для осуществления работы. Это случилось в середине 19-го столетия, до того как молекулярная кинетика получила признание. На сегодняшний день в технике и науке применяется как термодинамика, так и молекулярно-кинетическая теория. Последняя в теоретической физике именуется статистической механикой. Она наряду с термодинамикой исследует с применением различных методов одинаковые явления. Эти две теории взаимно дополняют друг друга. Основа термодинамики составлена двумя ее законами. Оба они касаются поведения энергии и установлены опытным путем. Законы эти справедливы для любого вещества вне зависимости от внутреннего строения. Более глубокой и точной наукой считается статистическая механика. По сравнению с термодинамикой она представляет большую сложность. Ее применяют в том случае, когда термодинамические соотношения оказываются недостаточными для объяснения исследуемых явлений.

Молекулярно-кинетическая теория

К середине 19-го века было доказано, что наряду с механической существует и внутренняя энергия макроскопических тел. Она входит в баланс энергетических природных превращений. После того как была открыта внутренняя энергия, было сформулировано положение о ее сохранении и превращении. В то время как шайба, скользящая по льду, останавливается под воздействием силы трения, ее кинетическая (механическая) энергия не просто перестает существовать, но и передается молекулам шайбы и льда. При движении неровности поверхностей тел, подвергающихся трению, деформируются. При этом интенсивность движущихся беспорядочно молекул возрастает. При нагревании обоих тел возрастает внутренняя энергия. Нетрудно пронаблюдать и обратный переход. При нагревании воды в закрытой пробирке внутренняя энергия (и ее, и образующегося пара) начинает возрастать. Давление увеличится, в результате чего пробка будет вытеснена. Внутренняя энергия пара станет причиной увеличения кинетической энергии. В процессе расширения пар совершает работу. При этом его внутренняя энергия уменьшается. В итоге происходит охлаждение пара.

Внутренняя энергия. Общая информация

При беспорядочном движении всех молекул сумма их кинетических энергий, а также потенциальных энергий их взаимодействий составляет внутреннюю энергию. Учитывая положение молекул относительно друг друга и их движение, вычислить эту сумму практически невозможно. Это обусловлено огромным количеством элементов в макроскопических телах. В связи с этим необходимо уметь вычислять значение в соответствии с макроскопическими параметрами, которые можно измерить.

Одноатомный газ

Вещество считается достаточно простым по своим свойствам, поскольку состоит из отдельных атомов, а не молекул. К одноатомным газам относят аргон, гелий, неон. Потенциальная энергия в данном случае равна нулю. Это обусловлено тем, что молекулы в идеальном газе друг с другом не взаимодействуют. Кинетическая энергия беспорядочного молекулярного движения является определяющей для внутренней (U). Для того чтобы вычислить U одноатомного газа массой m, нам необходимо произвести умножение кинетической энергии (средней) 1-го атома на общее число всех атомов. Но при этом нужно учитывать, что kNA=R. Исходя из имеющихся у нас данных, мы получаем следующую формулу: U= 2/3 х m/M х RT, где внутренняя энергия прямо пропорциональна абсолютной температуре. Все изменения U определяются только T (температурой), замеренной в изначальном и итоговом состоянии газа, и не имеют прямого отношения к объему. Это связано с тем, что взаимодействия его потенциальной энергии равны 0, и уж вовсе не зависят от других системных параметров макроскопических объектов. При наличии более сложных молекул идеальный газ также будет иметь внутреннюю энергию, прямо пропорциональную абсолютной температуре. Но, надо сказать, при этом между U и T коэффициент пропорциональности изменится. Ведь сложные молекулы выполняют не только поступательные движения, но и вращательные. Внутренняя энергия равна сумме этих движений молекул.

От чего зависит U?

Внутренняя энергия находится под влиянием одного из макроскопических параметров. Это температура. У реальных газов, жидких и твердых тел потенциальная энергия (средняя) при взаимодействии молекул не равняется нулю. Хотя, если рассмотреть точнее, для газов она много меньше кинетической (средней же). При этом для твердых и жидких тел - сравнима с ней. А вот средняя U зависит от V вещества, потому что в период его изменения меняется и среднее расстояние, которое есть между молекулами. Из этого следует, что в термодинамике внутренняя энергия зависит не только от температуры T, но и от V (объема). Их значение однозначно определяет состояние тел, а значит и U.

Мировой океан

Сложно представить, какие невероятно большие запасы энергии содержит в себе Мировой океан. Рассмотрим, что собой представляет внутренняя энергия воды. Надо отметить, что она же является тепловой, потому что образовалась в результате перегрева жидкой части поверхности океана. Так вот, имея разницу, к примеру, в 20 градусов по отношению к донной воде, она приобретает значение около 10^26 Дж. При измерении течений в океане его кинетическая энергия оценивается величиной около 10^18 Дж.

Глобальные проблемы

Существуют глобальные проблемы, которые можно поставить на мировой уровень. К ним относят:

Истощение запасов ископаемого топлива (в первую очередь нефти и газа);

Значительное загрязнение окружающей среды, связанное с использованием этих ископаемых;

Тепловое "загрязнение", плюс ко всему повышение концентрации атмосферной углекислоты, грозящее глобальными климатическими нарушениями;

Использование урановых запасов, приводящих к появлению радиоактивных отходов, которые весьма негативно сказываются на жизнедеятельности всего живого;

Использование термоядерной энергии.

Заключение

Вся эта неопределенность касательно ожидания последствий, которые непременно настанут, если не перестать потреблять энергию, добытую такими способами, заставляет ученых и инженеров уделять практически все свое внимание решению этой проблемы. Их главной задачей является поиск оптимального источника энергии, Немаловажно и задействование различных природных процессов. Среди них наибольший интерес представляют: солнце, вернее солнечное тепло, ветер и энергия в Мировом океане.

Во многих странах моря и океаны давно рассматривают как источник энергии, и их перспективы становятся все более многообещающими. Океан таит в себе немало тайн, его внутренняя энергия - это бездонный кладезь возможностей. Одно только то, сколько способов извлечения энергии он нам предоставляет (таких как океанские течения, энергия приливов и отливов, термальная энергия и другие), уже заставляет задуматься о его величии.

При изучении тепловых явлений наряду с механической энергией тел вводится новый вид энергии - внутренняя энергия. Вычислить внутреннюю энергию идеального газа не составляет большого труда.

Наиболее прост по своим свойствам одноатомный газ, т. е. газ, состоящий из отдельных атомов, а не молекул. Одноатомными являются инертные газы - гелий, неон, аргон и др. Можно получить одноатомный (атомарный) водород, кислород и т. д. Однако такие газы будут неустойчивыми, так как при столкновениях атомов образуются молекулы Н 2 , О 2 и др.

Молекулы идеального газа не взаимодействуют друг с другом, кроме моментов непосредственного столкновения. Поэтому их средняя потенциальная энергия очень мала и вся энергия представляет собой кинетическую энергию хаотического движения молекул. Это, конечно, справедливо, если сосуд с газом покоится, т. е. газ как целое не движется (его центр масс находится в покое). В этом случае упорядоченное движение отсутствует и механическая энергия газа равна нулю. Газ обладает энергией, которую называют внутренней.

Для вычисления внутренней энергии идеального одноатомного газа массой т нужно умножить среднюю энергию одного атома, выражаемую формулой (4.5.5), на число атомов. Это число равно произведению количества вещества на постоянную Авогадро N A .

Умножая выражение (4.5.5) на
, получим внутреннюю энергию идеального одноатомного газа:

(4.8.1)

Внутренняя энергия идеального газа прямо пропорциональна его абсолютной температуре. От объема газа она не зависит. Внутренняя энергия газа представляет собой среднюю кинетическую энергию всех его атомов.

Если центр масс газа движется со скоростью v 0 , то полная энергия газа равна сумме механической (кинетической) энергии и внутренней энергииU :

(4.8.2)

Внутренняя энергия молекулярных газов

Внутренняя энергия одноатомного газа (4.8.1) - это по существу средняя кинетическая энергия поступательного движения молекул. В отличие от атомов молекулы, лишенные сферической симметрии, могут еще вращаться. Поэтому наряду с кинетической энергией поступательного движения молекулы обладают и кинетической энергией вращательного движения.

В классической молекулярно-кинетической теории атомы и молекулы рассматриваются как очень маленькие абсолютно твердые тела. Любое тело в классической механике характеризуется определенным числом степеней свободы f - числом независимых переменных (координат), однозначно определяющих положение тела в пространстве. Соответственно число независимых движений, которые тело может совершать, также равно f . Атом можно рассматривать как однородный шарик с числом степеней свободы f = 3 (рис. 4.16, а). Атом может совершать только поступательное движение по трем независимым взаимно перпендикулярным направлениям. Двухатомная молекула обладает осевой симметрией (рис. 4.16, б) и имеет пять степеней свободы. Три степени свободы соответствуют ее поступательному движению и две - вращательному вокруг двух осей, перпендикулярных друг другу и оси симметрии (линии, соединяющей центры атомов в молекуле). Многоатомная молекула, подобно, твердому телу произвольной формы, характеризуется шестью степенями свободы (рис. 4.16, в); наряду с поступательным движением молекула может совершать вращения вокруг трех взаимно перпендикулярных осей.

От числа степеней свободы молекул зависит внутренняя энергия газа. Вследствие полной беспорядочности теплового движения ни один из видов движения молекулы не имеет преимущества перед другим. На каждую степень свободы, соответствующую поступательному или вращательному движению молекул, приходится одна и та же средняя кинетическая энергия. В этом состоит теорема о равномерном распределении кинетической энергии по степеням свободы (она строго доказывается в статистической механике).

Средняя кинетическая энергия поступательного движения молекул равна . Поступательному движению соответствуют три степени свободы. Следовательно, средняя кинетическая энергия , приходящаяся на одну степень свободы, равна:

(4.8.3)

Если эту величину умножить на число степеней свободы и число молекул газа массой т, то получится внутренняя энергия произвольного идеального газа:

(4.8.4)

Эта формула отличается от формулы (4.8.1) для одноатомного газа заменой множителя 3 на множитель f .

Внутренняя энергия идеального газа прямо пропорциональна абсолютной температуре и не зависит от объема газа.

Внутренняя энергия тела не может являться постоянной величиной. Она может изменяться у любого тела. Если повысить температуру тела, то его внутренняя энергия увеличится, т.к. увеличится средняя скорость движения молекул. Таким образом, увеличивается кинетическая энергия молекул тела. И, наоборот, при понижении температуры, внутренняя энергия тела уменьшается.

Можно сделать вывод: внутренняя энергия тела изменяется, если меняется скорость движения молекул. Попытаемся определить, каким методом можно увеличить или уменьшить скорость передвижения молекул. Рассмотрим следующий опыт. Закрепим на подставке латунную трубку с тонкими стенками. Наполним трубку эфиром и закроем его пробкой. Затем обвяжем его веревкой и начнем интенсивно двигать веревкой в разные стороны. Спустя определенное время, эфир закипит, и сила пара вытолкнет пробку. Опыт демонстрирует, что внутренняя энергия вещества (эфира) возросла: ведь он изменил свою температуру, при этом закипев.

Увеличение внутренней энергии произошло за счет совершения работы при натирании трубкой веревкой.

Как мы знаем, нагревание тел может происходить и при ударах, сгибании или разгибании, говоря проще, при деформации. Во всех приведенных примерах, внутренняя энергия тела возрастает.

Таким образом, внутреннюю энергию тела можно увеличить, совершая над телом работу.

Если же работу выполняет само тело, его внутренняя энергия уменьшается.

Рассмотрим еще один опыт.

В стеклянный сосуд, у которого толстые стенки и он закрыт пробкой, накачаем воздух через специально проделанное отверстие в ней.

Спустя некоторое время пробка вылетит из сосуда. В тот момент, когда пробка вылетает из сосуда, мы сможем увидеть образование тумана. Следовательно, его образование обозначает, что воздух в сосуде стал холодным. Сжатый воздух, который находится в сосуде, при выталкивании пробки наружу совершает определенную работу. Данную работу он выполняет за счет своей внутренней энергии, которая при этом сокращается. Делать выводы об уменьшении внутренней энергии можно исходя из охлаждения воздуха в сосуде. Таким образом, внутреннюю энергию тела можно изменять путем совершения определенной работы.

Однако, внутреннюю энергию возможно изменить и иным способом, без совершения работы. Рассмотрим пример, вода в чайнике, который стоит на плите закипает. Воздух, а также другие предметы в помещении нагреваются от радиатора центрального направления. В подобных случаях, внутренняя энергия увеличивается, т.к. увеличивается температура тел. Но работа при этом не совершается. Значит, делаем вывод, изменение внутренней энергии может произойти не из-за совершения определенной работы.

Рассмотрим еще один пример.

В стакан с водой опустим металлическую спицу. Кинетическая энергия молекул горячей воды, больше кинетической энергии частиц холодного металла. Молекулы горячей воды будут передавать часть своей кинетической энергии частицам холодного металла. Таким образом, энергия молекул воды будет определенным образом уменьшаться, тем временем как энергия частиц металла будет повышаться. Температуры воды понизится, а температуры спицы не спеша, будет увеличиваться. В дальнейшем, разница между температурой спицы и воды исчезнет. За счет этого опыта мы увидели изменение внутренней энергии различных тел. Делаем вывод: внутренняя энергия различных тел изменяется за счет теплопередачи.

Процесс преобразования внутренней энергии без совершения определенной работы над телом или самим телом называется теплопередачей.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Любое тело или предмет обладают энергией. Например, летящий самолет или падающий шар обладают механической энергией. В зависимости от взаимодействия с внешними телами различают два вида механической энергии: кинетическая и потенциальная. Кинетической энергией обладают все предметы, которые тем или иным способом движутся в пространстве. Это самолет, птица, летящий в ворота мяч, перемещающийся автомобиль и др. Вторым видом механической энергии является потенциальная. Этой энергией обладают, например, поднятый камень или мяч над поверхностью земли, сжатая пружина и т.п. При этом кинетическая энергия тела может переходить в потенциальную и наоборот.

Самолеты, вертолет и дирижабль обладают кинетической энергией


Сжатая пружина обладает потенциальной энергией

Рассмотрим пример. Тренер поднимает мяч и держит его в руках. При этом мяч обладает потенциальной энергией. Когда тренер бросает мяч на землю, то у него появляется кинетическая энергия, пока он летит. После того, как мяч отскакивает, также происходит перетекание энергии до тех пор, пока мяч не будет лежать на поле. В этом случае и кинетическая и потенциальная энергии равны нулю. Но у мяча при этом повысилась внутренняя энергия молекул из-за взаимодействия с полем.

Но существует еще внутренняя энергия молекул тела, например, того же мяча. Пока мы его перемещаем или поднимаем, внутренняя энергия не изменяется. Внутренняя энергия не зависит от механического воздействия или движения, а зависит только от температуры, агрегатного состояния и других особенностей.

В каждом теле имеется множество молекул, они могут обладать как кинетической энергией движения, так и потенциальной энергией взаимодействия. При этом внутренняя энергия является суммой энергий всех молекул тела.

Как изменить внутреннюю энергию тела

Внутренняя энергия зависит от скорости движения молекул в теле. Чем быстрее они движутся, тем выше энергия тела. Обычно это происходит при нагревании тела. Если же мы его охлаждаем, то происходит обратный процесс - внутренняя энергия уменьшается.

Если мы нагреваем кастрюлю при помощи огня (плиты), то мы совершаем над этим предметом работу и, соответственно, изменяем его внутреннюю энергию.

Внутреннюю энергию можно изменить двумя основными способами. Совершая работу над телом, мы увеличиваем его внутреннюю энергию и наоборот, если тело совершает работу, то его внутренняя энергия уменьшается. Вторым способом изменения внутренней энергии является процесс теплопередачи. Обратите внимание, что во втором варианте над телом не совершается работы. Так, например, нагревается стул зимой, стоящий рядом возле горячей батареи. Теплопередача всегда происходит от тел с более высокой температурой к телам с меньшей температурой.

Таким образом, зимой нагревается воздух от батарей. Проведем небольшой эксперимент, который можно выполнить в домашних условиях. Наберите стакан горячей воды и поставьте его в чашу или контейнер с холодной. Через время температура воды в обоих сосудах станет одинаковой. Это и является процессом теплопередачи, то есть изменения внутренней энергии без совершения работы. Существует три способа теплопередачи:

ПОДЕЛИЛИСЬ

Как вы думаете, от чего зависит активность человека? Почему кто-то с лёгкостью просыпается и летит на работу, а другому едва удаётся доползти от постели к кухне за кофе? Хотите узнать, как изменить свою жизнь, чтобы всегда быть заряженным и всё успевать?

В этой статье мы разберём основные свойства внутренней энергии человека и то, почему важно делать энергетические упражнения.

Природа Вселенной и внутренней энергии человека

В разных культурах внутреннюю энергию называли по-разному: Ци, Вриль, Прана, Оргон, Жива, витальность, мана. Все эти понятия означают примерно одно и то же.

Теперь к разным религиозным и эзотерическим направлениям присоединилась наука. Квантовые физики заявляют, что Вселенная состоит из волн и частиц энергии. Более того, мы можем научиться управлять энергетической реальностью с помощью своих мыслей.

Вы уже наверное слышали о таких вещах как Секрет, Трансфёрфинг реальности, созидательная визуализация. Все эти системы работают. Но то, насколько сильно влияют ваши мысли и намерение на реальность, зависит от того, насколько мощной энергетикой вы обладаете и насколько хорошо вы её используете.

В любом случае мощности ваших мыслей достаточно, чтобы зажечь лампочку на 25 Ватт

Энергию Вселенной можно воспринимать в двух формах - как вещество или как волну. Простые аналогии - электричество и вай-фай.

Сегодня мы сделаем акцент на энергию как вещество. Но если вы хотите узнать больше о её волновых свойствах, . Он по полочкам разбирает оба типа энергии и показывает, в чём разница в работе с ними.

Пятый элемент или энергия как вещество

Восприятие энергии как вещества естественнее для человека. С рождения мы изучаем мир нашими органами чувств. Пробуем на вкус, прикасаемся ладошкой, слушаем, смотрим и созерцаем.

Поэтому человек в некотором смысле ограничен. Наша цивилизация развивалась как цивилизация материальных воплощений, в то время как более тонкие слои мира остались неосознанны.

Тем не менее, о внутренней энергии говорят даже Платон и Аристотель. Кроме классических стихий Воды, Огня, Земли, Воздуха, они выделяли пятый элемент - эфир или квинтэссенция. Античные философы напрямую связывали энергию 5-ти стихий с 5-тью тонкими телами - разум, чувства, плоть, материя и эфир.

Модель 5-ти стихий ложится и на структуру Таро - 4 масти и Старшие Арканы

Греки выделяли квинтэссенцию в молнии. Сейчас у нас есть ещё более подходящая аналогия - электричество.

Его нельзя увидеть, но мы знаем, что оно есть. Оно заставляет работать наши приборы. Мы можем управлять им, включать и выключать. Но что будет, если не управлять электричеством? Одним приборам будет его недостаточно, а другие будут гореть из-за слишком большого напряжения.

Внутренняя энергия человека во многом играет роль электричества для нашего тела и разума. Поэтому нельзя отпускать её состояние на самотёк.

Зачем заниматься энергетическими практиками

Внутренняя энергия есть у каждого живого существа. Она расходуется на каждое наше действие, эмоцию и даже мысль.

От количества вашей энергии зависит всё. Физическое самочувствие, иммунитет, здоровье. Настроение и жизненная активность, будете ли вы добавиться своих целей или скорее жаловаться на внешние обстоятельства. А также то, как вас воспринимают другие. Люди с мощной энергией привлекательны и уверенны, к ним невольно проникаешься симпатией.

Когда ваша энергетика здорова, Вселенная принимает вас, вы понимаете своё место в жизни и наслаждаетесь им

В общем, внутренняя энергия - своего рода топливо для вашей жизни, от качества которого зависит, насколько быстро вы двигаетесь и насколько далеко доедите. Чем более осознанно вы относитесь к жизни и своим действиям, тем больше энергии вы экономите и накапливаете.

В итоге ваше энергетическое состояние растёт по наклонной и начинает вызывать видимые изменения в жизни, вплоть до открытия новых талантов и мистических способностей.

Но сперва вам нужно научиться ощущать свою энергию.

Когда вы начнёте чувствовать её течение сквозь ваше тело, тогда вы научитесь ей управлять. А после этого сможете приступить к более серьёзным практикам, которые способны вызвать ощутимые изменения в ваших мыслях, теле и жизни.

Сложно ли обучиться энергетическим практикам и добиться видимых результатов

Раньше этому обучали только в закрытых сообществах. Монахи десятилетиями учились управлять своей энергией.

Сейчас всё проще. Во-первых, мы живём во время перехода из Старого Эона в Новый. Сама Вселенная подталкивает нас и помогает нам развиваться. Во-вторых, сейчас найти описание энергетической практики или медитации очень просто.

Проверенные приёмы для работы с внутренней энергией можно получить на .


Top