Реферат энергия и ее виды. Виды, способы получения, преобразования и использования энергии

План лекции:

1).Понятие энергии. Основные виды энергии, их характеристика.

2).Традиционная энергетика и ее характеристика.

3).Способы получения тепловой и электрической энергии.

Понятие энергии. Основные виды энергии. Энергия (греч.–действие, деятельность)–общая количественная мера различных форм движения материи.

Из данного определения вытекает:

· энергия–это нечто, что проявляется лишь при изменении состояния (положения) различных объектов окружающего нас мира;

· энергия–это нечто, способное переходить из одной формы в другую;

· энергия характеризуется способностью производить полезную для человека работу;

· энергия–это нечто, что можно объективно определить, количественно измерить.

Энергия является основой жизни на Земле. Растения поглощают солнечную энергия в процессе фотосинтеза; животные потребляют эту энергию косвенным путем, поедая растения и других животных. Человек потребляет солнечную энергию различными путями, в том числе и с пищей. Еще в глубокой древности человек научился перерабатывать энергию Солнца путем сжигания биологической материи (например, древесины или навоза). И в настоящее время миллионы людей используют эти важные источники энергии для приготовления пищи или обогрева жилища – первых жизненных потребностей человека.

Современные энергосистемы являются неотъемлемым компонентом инфраструктуры общества, в особенности промышленно развитых стран, которые расходуют примерно 4/5 энергоносителей и в которых живет лишь ¼ населения планеты. На страны третьего мира, где живет ¾ населения Земли, приходится около 1/5 мирового потребления энергии.

Учитывая, что энергия является важнейшим элементом устойчивого развития любого государства, каждое из них стремится разработать такие способы энергоснабжения, которые наилучшим образом обеспечивали бы развитие и повышение качества жизни людей, особенно в развивающихся странах, при одновременном сведении к минимуму воздействия человеческой деятельности на здоровье людей и окружающую среду.

Электроэнергетика является важнейшей отраслью экономики любой страны, поскольку ее продукция (электрическая энергия) относится к универсальному виду энергии. Ее легко можно передавать на значительные расстояния, делить на большое количество потребителей. Без электрической энергии невозможно осуществлять многие технологические процессы, как невозможно представить нашу повседневную жизнь без отопления, освещения, охлаждения, транспорта, телевизора, холодильника, стиральной машины, пылесоса, утюга, использования современных средств связи (телефон, телеграф, телефакс, ЭВМ), которые также потребляют электроэнергию.



Одной из специфических особенностей электроэнергетики является то, что ее продукция в отличие от других отраслей промышленности не может накапливаться в запас на складе для последующего потребления. В каждый момент времени ее производство должно соответствовать ее потреблению.

Энергию в зависимости от природы делят на следующие виды:

Механическая энергия–проявляется при взаимодействие, движении отдельных тел или частиц. К ней относят энергию движения или вращения тела, энергию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах–транспортных и технологических.

Тепловая энергия–энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ. Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).

Электрическая энергия–энергия движущихся по электрической цепи электронов (электрического тока). Электрическая энергия применяется для получения механической энергии с помощью электродвигателей и осуществления механических процессов обработки материалов: дробления, измельчения, перемешивания; для проведения электрохимических реакций; получения тепловой энергии в электронагревательных устройствах и печах; для непосредственной обработки материалов (электроэррозионная обработка).

Химическая энергия–это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами. Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горения топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98%), но низкой емкостью.



Магнитная энергия–энергия постоянных магнитов, обладающих большим запасом энергии, но «отдающих» ее весьма неохотно. Однако электрический ток создает вокруг себя протяженные, сильные магнитные поля, поэтому чаще всего говорят об электромагнитной энергии.

Электрическая и магнитная энергии тесно взаимосвязаны друг с другом, каждую из них можно рассматривать как «оборотную» сторону другой.

Электромагнитная энергия–это энергия электромагнитных волн, т.е. движущихся электрического и магнитного полей. Она включает видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны. Таким образом, электромагнитная энергия–это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия–энергия, локализованная в ядрах атомов так называемых радиоактивных веществ. Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер(термоядерная реакция).

Гравитационная энергия–энергия, обусловленная взаимодействием(тяготением) массивных тел, она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, «запасенная» теплом, поднятым на определенную высоту над поверхностью Земли – энергия силы тяжести.

Таким образом, в зависимости от уровня проявления, можно выделить энергию макромира–гравитационную энергию взаимодействия тел–механическую, энергию молекулярных взаимодействий–тепловую; энергию атомных взаимодействий–химическую энергию излучения–электромагнитную, энергию, заключенную в ядрах атомов–ядерную.

Современная наука не исключает существование и других видов энергии, пока не зафиксированных, но не нарушающих единую естественнонаучную картину мира и понятие об энергии.

По большому счету понятие энергии, идеи о ней искусственны и созданы специально для того, чтобы быть результатом наших размышлений об окружающем мире. В отличие от материи, о которой мы можем сказать, что она существует, энергия–это плод мысли человека, его «изобретение», построенное так, чтобы была возможность описать различные изменения в окружающем мире и в то же время говорить о постоянстве, сохранении чего-то, что было названо энергией, даже если наше представление об энергии будет меняться из года в год.

Единицей измерения энергии является 1 Дж (Джоуль), для измерения механической энергии используют величину 1 кгм=9,8 Дж, электрической энергии–1 кВт/ч=3,6 МДж, при этом 1 Дж=1 Вт/С.

Необходимо отметить, что в естественнонаучной литературе тепловую, химическую и ядерную энергии иногда объединяют понятием внутренней энергии, т.е. заключенный внутри вещества.

Первичная энергия – это энергия, которая содержится в таких видах природных (источников) ресурсов, как древесина, уголь, нефть, природные газ, уран, энергия ветра, солнца, гидроэнергия, и может быть преобразована в электрическую, тепловую, механическую, химическую.

Вторичная энергия – это формы, более пригодные для эксплуатации, в которые может быть преобразована первичная энергия, такие, как электроэнергия и бензин. Вторичная энергия получается после преобразования первичной на специальных установках.

В первичной энергии нет недостатка. Солнце дарит нам свою энергию каждый день. Мы видим проявление ее в разных формах. Так, например, деревья и растения, пропуская через себя солнечные лучи, преобразуют эту энергию в растительную биомассу. Огромное количество солнечной энергии скопилось в материалах земной коры (торф, нефть, уголь).

Общие запасы первичной энергии, на которые может рассчитывать человечество, оцениваются ресурсами, которые можно разделить на две большие группы: возобновляемые и невозобновляемые.

Возобновляемая – это энергия солнца, ветра, волн, биомассы (древесины или растений), геотермальная и гидроэнергия.

Возобновляемая энергия:

· падающая на поверхность Земли солнечная энергия;

· геофизическая энергия (ветра, рек, морских приливов и отливов);

· энергия биомассы (древесина, отходы растениеводства, отходы животноводства).

Невозобновляемая энергия – это энергия, содержащаяся в органическом топливе: уголь, нефть, природный газ, которые дают на сегодня свыше 80% энергии. Плюс уран (торий и др.).

Использование запасов органического топлива может быть связано с большими затратами на разработку, транспортировку этих ресурсов, охрану труда и окружающей среды.

Традиционную энергетику главным образом разделяют на электроэнергетику и теплоэнергетику.

Наиболее удобный вид энергии–электрическая, которая может считаться основой цивилизации. Преобразование первичной энергии в электрическую производится на электростанциях: ТЭС, ГЭС, АЭС.

Характерной чертой традиционной энергетики является ее давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всем мире получают именно на традиционных электростанциях, их единичная электрическая мощность очень часто превышает 1000 Мвт. Традиционная энергетика делится на несколько направлений:

· Тепловая энергетика;

· Гидравлическая энергетика;

· Ядерная энергетика.

Эта энергетика является традиционной, потому как для производства вторичных энергоресурсов используются такие невозобновляемые ресурсы как нефть, газ, уран. Гидроэнергетика использует энергию водного потока. Использование только традиционной энергетики ведет не только к истощению недр земли, но и к значительному ухудшению экологической ситуации на планете. Основной проблемой является высокая эмиссия углекислого газа в атмосферу, вызванная сжиганием угля, нефти и природного газа. Только на ухудшение экологии на планете влияет вырубка лесов, осушение болот и т.д.

Электроэнергетика требует и поставляет потребителям электрическую энергию. Она включает в себя электрические станции, подстанции, линии электропередач, центры потребления электрической энергии.

Теплоэнергетика производит и поставляет потребителю тепловую энергию (пар, горячая вода). В нее входят тепловые станции, тепловые сетки (трубопроводы горячей воды и пара), центры потребления тепловой энергии.

Наиболее удобный вид энергии – электрическая, которая по праву считается основой цивилизации.

Преимущества электрической энергии перед другими видами энергии, а именно:

· Электрическую энергию легко преобразовать в другие виды энергии (механическую, тепловую, световую, химическую и др.), и наоборот, в электрическую энергию легко преобразуются любые другие виды энергии;

· Электрическую энергию можно передавать практически на любые расстояния. Это дает возможность строить электростанции в местах, где имеются природные энергетические ресурсы, и передавать электрическую энергию в места, где расположены источники промышленного сырья, но нет местной энергетической базы;

· Электрическую энергию удобно дробить на любые части в электрических цепях (мощность приемников электроэнергии может быть от долей ватта до тысячи киловатт);

· Процессы получения, передачи и потребления электроэнергии легко поддаются автоматизации;

· Процессы, в которых используется электрическая энергия, допускают простое управление (нажатие кнопки, выключателя и т.д.)

Особо следует отметить существенное удобство применения электрической энергии при автоматизации производственных процессов, благодаря точности и чувствительности электрических методов контроля и управления. Использование электрической энергии позволило повысить производительность труда во всех областях деятельности человека, автоматизировать почти все технологические процессы в промышленности, на транспорте, в сельском хозяйстве и в быту, а также создать комфорт в производственных и жилых помещениях. Кроме того, электрическую энергию широко используют в технологических установках для нагрева изделий, плавления металлов с помощью электрохимии, очистки материалов и газов и т.д.

В настоящее время электрическая энергия является практически единственным видом энергии для искусственного освещения. Можно сказать, что без электрической энергии невозможна нормальная жизнь современного общества.

Единственным недостатком электрической энергии является невозможность запасать ее в больших количествах и сохранять эти запасы в течение длительного времени. Запасы электрической энергии в аккумуляторах, гальванических элементах и конденсаторах достаточны лишь для работы сравнительно маломощных устройств, причем сроки ее сохранения ограничены. Поэтому электрическая энергия должна быть произведена тогда, когда ее требует потребитель, и в том количестве, в котором она ему необходима.

Потребителями энергии являются: промышленность, транспорт, сельское хозяйство, жилищно-коммунальное хозяйство, сфера сбыта и обслуживания. Если общую энергию применяемых первичных энергоресурсов принять за 100%, то полезно используемая энергия составит только 35-40%, остальная часть теряется, причем большая часть – в виде теплоты.

Лекция 2. Виды энергии. Получение, преобразование и использование энергии

ТЕМА 2. ВИДЫ ЭНЕРГИИ. ПОЛУЧЕНИЕ, ПРЕОБРАЗОВАНИЕ И ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ

Основные понятия:

энергия; кинетическая и потенциальная энергия; виды энергии; энергетика; энергосистема; электроэнергетическая система; потребители энергии; традиционная и нетрадиционная энергетика; графики нагрузки; энергопотребление на душу населения; энергоемкость экономики; показатель энергоэкономического уровня производства .

Энергия – всеобщая основа природных явлений, базис культуры и всей деятельности человека. В то же время под энергией (греческое – действие, деятельность ) понимается количественная оценка различных форм движения материи, которые могут превращаться одна в другую .

Согласно представлениям физической науки, энергия – это способность тела или системы тел совершать работу. Существуют различные классификации видов и форм энергии. Человек в своей повседневной жизни наиболее часто встречается со следующими видами энергии: механическая, электрическая, электромагнитная, тепловая, химическая, атомная (внутриядерная). Последние три вида относятся к внутренней форме энергии, т.е. обусловлены потенциальной энергией взаимодействия частиц, составляющих тело, или кинетической энергией их беспорядочного движения.

Если энергия – результат изменения состояния движения материальных точек или тел, то она называется кинетической ; к ней относят механическую энергию движения тел, тепловую энергию, обусловленную движением молекул.

Если энергия – результат изменения взаимного расположения частей данной системы или ее положения по отношению к другим телам, то она называется потенциальной ; к ней относят энергию масс, притягивающихся по закону всемирного тяготения, энергию положения однородных частиц, например, энергию упругого деформированного тела, химическую энергию.

Энергию в естествознании в зависимости от природы делят на следующие виды.

Механическая энергия – проявляется при взаимодействии, движении отдельных тел или частиц.

К ней относят энергию движения или вращения тела, энергию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах – транспортных и технологических.

Тепловая энергия – энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ.

Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).

Электрическая энергия энергия движущихся по электрической цепи электронов (электрического тока).



Электрическая энергия применяется для получения механической энергии с помощью электродвигателей и осуществления механических процессов обработки материалов: дробления, измельчения, перемешивания; для проведения электрохимических реакций; получения тепловой энергии в электронагревательных устройствах и печах; для непосредственной обработки материалов (электроэрозионная обработка).

Химическая энергия это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами.

Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98%), но низкой емкостью.

Магнитная энергия – энергия постоянных магнитов, обладающих большим запасом энергии, но «отдающих» ее весьма неохотно. Однако электрический ток создает вокруг себя протяженные, сильные магнитные поля, поэтому чаще всего говорят об электромагнитной энергии.

Электрическая и магнитная энергии тесно взаимосвязаны друг с другом, каждую из них можно рассматривать как «оборотную» сторону другой.

Электромагнитная энергия – это энергия электромагнитных волн, т.е. движущихся электрического и магнитного полей. Она включает видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны.

Таким образом, электромагнитная энергия – это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия – энергия, локализованная в ядрах атомов так называемых радиоактивных веществ. Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер (термоядерная реакция).

Бытует и старое название данного вида энергии – атомная энергия, однако это название неточно отображает сущность явлений, приводящих к высвобождению колоссальных количеств энергии, чаще всего в виде тепловой и механической.

Гравитационная энергия – энергия, обусловленная взаимодействием (тяготением) массивных тел, она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на определенную высоту над поверхностью Земли – энергия силы тяжести.

Таким образом, в зависимости от уровня проявления, можно выделить энергию макромира – гравитационную, энергию взаимодействия тел – механическую, энергию молекулярных взаимодействий – тепловую, энергию атомных взаимодействий – химическую, энергию излучения – электромагнитную, энергию, заключенную в ядрах атомов – ядерную.

Современная наука не исключает существование и других видов энергии, пока не зафиксированных, но не нарушающих единую естественнонаучную картину мира и понятие об энергии.

В Международной системе единиц СИ в качестве единицы измерения энергии принят 1 Джоуль (Дж). 1 Дж эквивалентен
1 ньютон метр (Нм). Если расчеты связаны с теплотой, биологической и многими другими видами энергии, то в качестве единицы энергии применяется внесистемная единица - калория (кал) или килокалория (ккал), 1кал=4,18 Дж. Для измерения электрической энергии пользуются такой единицей, как Ватт·час (Вт·ч, кВт·ч, МВт·ч), 1 Вт·ч=3,6 МДж. Для измерения механической энергии используют величину 1 кг·м=9,8 Дж.

Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная), и которая может быть преобразована в электрическую, тепловую, механическую, химическую называется первичной . В соответствии с классификацией энергоресурсов по признаку исчерпаемости можно классифицировать и первичную энергию. На рис. 2.1 представлена схема классификации первичной энергии.

Рис. 2.1. Классификация первичной энергии

При классификации первичной энергии выделяют традиционные и нетрадиционные виды энергии. К традиционным относятся такие виды энергии, которые на протяжении многих лет широко использовались человеком. К нетрадиционным видам энергии относят такие виды, которые начали использоваться сравнительно недавно.

К традиционным видам первичной энергии относят: органическое топливо (уголь, нефть и т.д.), гидроэнергию рек и ядерное топливо (уран, торий и др.).

Энергия, получаемая человеком, после преобразования первичной энергии на специальных установках - станциях, называется вторичной (электрическая энергия, энергия пара, горячей воды и т.д.).

Преимущества электрической энергии. Электрическая энергия является наиболее удобным видом энергии и по праву может считаться основой современной цивилизации. Подавляющее большинство технических средств механизации и автоматизации производственных процессов (оборудование, приборы ЭВМ), замена человеческого труда машинным в быту имеют электрическую основу.

Немногим более половины всей потребляемой энергии используется в виде тепла для технических нужд, отопления, приготовления пищи, оставшаяся часть - в виде механической, прежде всего в транспортных установках, и электрической энергии. Причем доля электрической энергии с каждым годом растет
(рис. 2.2).

Электрическая энергия – более универсальный вид энергии. Она нашла широкое применение в быту и во всех отраслях народного хозяйства. Насчитывается свыше четырехсот наименований электробытовых приборов: холодильники, стиральные машины, кондиционеры, вентиляторы, телевизоры, магнитофоны, осветительные приборы и т.д. Нельзя представить промышленность без электрической энергии. В сельском хозяйстве применение электричества непрерывно расширяется: кормление и поение животных, уход за ними, отопление и вентиляция, инкубаторы, калориферы, сушилки и т.д.

Электрификация – основа технического прогресса любой отрасли народного хозяйства. Она позволяет заменить неудобные для использования энергетические ресурсы универсальным видом энергии – электрической энергией, которую можно передавать на любое расстояние, превращать в другие виды энергии, например, в механическую или тепловую, делить ее между потребителями. Электричество – очень удобный для применения и экономичный вид энергии.

Рис. 2.2. Динамика потребления электрической энергии

Электрическая энергия обладает такими свойствами, которые делают ее незаменимой в механизации и автоматизации производства и в повседневной жизни человека:

1. Электрическая энергия универсальна, она может быть использована для самых различных целей. В частности, ее очень просто превратить в тепло. Это делается, например, в электрических источниках света (лампочках накаливания), в технологических печах, используемых в металлургии, в различных нагревательных и отопительных устройствах. Превращение электрической энергии в механическую используется в приводах электрических моторов.

2. При потреблении электрической энергии ее можно бесконечно дробить. Так, мощность электрических машин в зависимости от их назначения различна: от долей ватта в микродвигателях, применяемых во многих отраслях техники и в бытовых изделиях, до огромных величин, превышающих миллион киловатт, в генераторах электростанций.

3. В процессе производства и передачи электрической энергии, можно концентрировать ее мощность, увеличивать напряжение и передавать по проводам как на малые, так и на большие расстояния любое количество электрической энергии от электростанции, где она вырабатывается, всем ее потребителям.

Энергия (от греч. energeie - действие, деятельность) представляет собой общую количественную меру движения и взаимодействия всех видов материи. Это способность к совершению работы, а работа совершается тогда, когда на объект действует физическая сила (давление или гравитация). Работа- это энергия в действии.

Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива.

Электрическая энергия является одним из наиболее совершенных видов энергии в виду ряда достоинств.

Электрическая энергия является наиболее чистой формой энергии и может быть получена из большого многообразия первичных источников (например, уголь, нефть, газ, энергия воды и атомная энергия). Электрическая энергия имеет ряд неоспоримых преимуществ по сравнению с другими видами производной энергии – возможность получения практически любых количеств энергии как от элемента размером со спичечную головку, так и от турбогенераторов мощностью более 1000 МВт, сравнительная простота ее передачи на расстояние и легкость преобразования в энергию других видов. Основная проблема - это ее хранение.

Она более эффективна с точки зрения использования, чем ископаемое топливо, поскольку имеет широко известные преимущества: обеспечение чистоты, удобство управления, доступность. Электроэнергия может быть использована значительно более эффективно и значительно более целенаправленно, чем энергия сжигаемого топлива. Электрические нагревательные системы характеризуются высокой технической эффективностью, и, несмотря на более высокую стоимость энергии по сравнению с энергией других источников, они более экономичны вследствие более низких эксплуатационных расходов.

Электрическая и тепловая энергия производятся на:

- тепловых электрических станциях на органическом топливе (ТЭС) с использованием в турбинах водяного пара – (паротурбинные установки – ПТУ), продуктов сгорания – (газотурбинные установки – ГТУ), их комбинаций – (парогазовые установки – ПГУ);

- гидравлических электрических станциях (ГЭС), использующих энергию падающего потока воды, течения, прилива;

- атомных электрических станциях (АЭС), использующих энергию ядерного распада.

Тепловые и атомные электростанции. Типовые схемы ТЭС и АЭС. Паротурбинные конденсационные электростанции и теплоэлектроцентрали (ТЭЦ) с комбинированной выработкой тепла и электрической энергии.

По виду вырабатываемой энергии:

· тепловые электростанции, вырабатывающие только электроэнергию,- конденсационные электростанции (КЭС);

· тепловые электростанции, вырабатывающие электрическую и тепловую энергию,- теплоэлектроцентрали (ТЭЦ).

По виду теплового двигателя:

· электростанции с паровыми турбинами - паротурбинные ТЭС и АЭС;

· электростанции с газовыми турбинами - газотурбинные ТЭС;

· электростанции с парогазовыми установками - парогазовые ТЭС;

Тепловые электростанции (ТЭС) вырабатывают электроэнергию в результате преобразования тепловой энергии, которая выделяется при сжигании органического топлива (угля, нефти, газа).

В машинном зале тепловой электростанции установлен котел с водой.

При сгорании топлива вода в котле нагревается до нескольких сот градусов и превращается в пар.

Пар под давлением вращает лопасти турбины, турбина в свою очередь вращает генератор.

Генератор вырабатывает электрический ток.

Электрический ток поступает в электрические сети и по ним поступает на заводы, в школы, дома, больницы.

Передача электроэнергии от электростанций по линиям электропередачи осуществляется при напряжениях 110-500 киловольт, то есть значительно превышающих напряжения генераторов.

Повышение напряжения необходимо для передачи электроэнергии на большие расстояния.

Затем необходимо обратное понижение напряжения до уровня, удобного потребителю.

Преобразование напряжения происходит в электрических подстанциях с помощью трансформаторов.

А тепло в виде горячей воды поступает из ТЭЦ по теплотрассам.

Градирня - устройство для охлаждения воды на электростанции атмосферным воздухом.

Котел паровой - закрытый агрегат для получения пара на электростанции посредством нагревания воды. Нагрев воды осуществляется посредством сжигания топлива.

ЛЭП - линия электропередачи. Предназначена для передачи электричества. Различают воздушные ЛЭП (провода, протянутые над землей) и подземные (силовые кабели).

Рис.11 – Принципиальные схемы ТЭС (а) и ТЭЦ (б)

В настоящее время на ТЭС и ТЭЦ наряду с паротурбинными установками (ПТУ) получают распространение парогазовые установки (ПГУ), работающие по комбинированной схеме.

В первой ступени ПГУ с газовой турбиной в качестве первичного источника энергии и рабочего тела используют природный газ, а вторичным рабочим телом являются продукты сгорания. Во второй ступени источником энергии служат выхлопные газы турбины, а рабочим телом – пар, генерируемый в парогенераторе с их помощью.

Атомные электроcтанции.

Такие электростанции действуют по такому же принципу, что и ТЭЦ, но используют для парообразования энергию, получающуюся при радиоактивной распаде. В качестве топлива используется обогащенная руда урана.

Рис. 12. Принципиальная схема АЭС.

По сравнению с тепловыми и гидроэлектростанциями атомные электростанции имеют серьезные преимущества: они требуют малое количество топлива, не нарушают гидрологических режим рек, не выбрасывают в атмосферу загрязняющие ее газы. Основной процесс, идущий на атомной электростанции - управляемое расщепление урана-235, при котором выделяется большое количество тепла. Главная часть атомной электростанции - ядерный реактор, роль которого заключается в поддержании непрерывной реакции расщепления.

Ядерное топливо - руда, содержащая 3% урана 235; ею заполняются длинные стальные трубки - тепловыделяющие элементы (ТВЭЛы). Если много ТВЭЛов разместить поблизости друг от друга, то начнется реакция расщепления. Чтобы реакцию можно было контролировать, между ТВЭЛами вставляют регулирующие стержни; выдвигая и вдвигая их, можно управлять интенсивностью распада урана-235. Комплекс неподвижных ТВЭЛов и подвижных регуляторов и есть ядерные реактор. Тепло, выделяемое реактором, используется для кипячения воды и получения пара, который приводит в движение турбину атомной электростанции, вырабатывающую электричество.

33. Преобразования солнечной энергии в тепловую и электрическую. Ветроэнегетика и гидроэнергетика.

Основным направлением использования солнечной энергии является теплоснабжение. Для прямого преобразования солнечной энергии в тепловую разработаны и широко используются на практике установки солнечного теплоснабжения (СТО) для различных целей (горячее водоснабжение, отопление и кондиционирование воздуха в жилых, общественных, санаторно-курортных зданиях, подогрев воды в плавательных бассейнах и различных процессах сельскохозяйственного производства).

По данным метеорологов в Республике Беларусь 150 дней в году пасмурно, 185 дней - с переменной облачностью и 30 - ясных, а всего число часов солнечного сияния в Беларуси достигает 1200 часов на севере страны и 1300-на юге.

Солнечная электростанция представляет собой сооружение, состоящее из множества солнечных коллекторов, ориентирующихся на Солнце. Каждый коллектор передает солнечную энергию жидкости-теплоносителю, которая, превратившись в пар, от всех коллекторов собирается в центральной энергостанции и поступает на турбину энергогенератора.

Рисунок 13 - Последовательность приемников солнечного излучения

в порядке возрастания их эффективности и стоимости

Основным элементом солнечной нагревательной системы является приемник, в котором происходит поглощение солнечного излучения и передача энергии жидкости. На рисунке 13 схематически изображены различные варианты приемников солнечной энергии. Опыт эксплуатации этих установок показывает, что в системах солнечного горячего водоснабжения может быть замещено 40-60 % годовой потребности в органическом топливе в зависимости от района расположения при нагреве воды до 40 ... 60 °С.

а) открытый резервуар на поверхности земли; б) открытый резервуар, теплоизолированный от земли; в) черный резервуар; г) черный резервуар с теплоизолированным дном; д) закрытые черные нагреватели,

е) металлические проточные нагреватели со стеклянной крышкой;

ж) металлические проточные нагреватели с двумя стеклянными крышками; з) то же, с селективной поверхностью; и) то же, с вакуумом.

Воздухонагреватель представляет собой приемник, в котором имеется пористая или шероховатая черная поглощающая поверхность, нагревающая поступающий воздух, который затем подается к потребителю.

Солнечный коллектор включает в себя приемник , поглощающий солнечное излучение, и концентратор , представляющий собой оптическую систему, собирающую солнечное излучение и направляющую его на приемник. Концентратор представляет собой чаще всего зеркало параболической формы, в фокусе которого располагается приемник излучения. Он постоянно вращается, обеспечивая ориентацию на Солнце.

Фотоэлектрические преобразователи представляют собой устройства, действие которых основано на использовании фотоэффекта, в результате которого при освещении вещества светом происходит выход электронов из металлов (фотоэлектрическая эмиссия или внешний фотоэффект), перемещение зарядов через границу раздела полупроводников с различными типами проводимости (вентильный фотоэффект), изменение электрической проводимости (фотопроводимость). Методы фотоэлектри-ческого преобразования солнечной энергии в электрическую находит применение для питания потребителей в широком интервале мощностей: от мини-генераторов для часов и калькуляторов мощностью от несколько ватт до центральных электростанций мощностью несколько мегаватт.

Ветроэнергетика представляет собой область техники, использующую энергию ветра для производства энергии, а устройства, преобразующие энергию ветра в полезную механическую, электрическую или тепловую виды энергии, называются ветроэнергетическими установками (ВЭУ), или ветроустановками , и являются автономными

Энергия ветра в механических установках, например на мельницах и в водяных насосах, используется уже несколько столетий. После резкого скачка цен на нефть в 1973 г. интерес к таким установкам резко возрос. Большая часть существующих установок построена в конце 70-х - начале 80-х годов на современном техническом уровне при широком использовании последних достижений аэродинамики, механики, микроэлектроники для контроля и управления ими. Ветроустановки мощностью от нескольких киловатт до нескольких мегаватт производятся в Европе, США и других частях мира. Большая часть этих установок используется для производства электроэнергии, как в единой энергосистеме, так и в автономных режимах.

Одно из основных условий при проектировании ветроустановок - обеспечение их защиты от разрушений очень сильными случайными порывами ветра. В каждой местности в среднем раз в 50 лет бывают ветры со скоростью, в 5-10 раз превышающей среднюю, поэтому ветроустановки приходиться проектировать с большим запасом прочности. Максимальная проектная мощность ветроустановки определяется для некоторой стандартной скорости ветра, обычно принимаемой равной 12 м/с.

Ветроэнергетическая установка состоит из ветроколеса, генератора электрического тока, сооружения для установки на определенной высоте от земли ветряного колеса, системы управления параметрами генерируемой электроэнергии в зависимости от изменения силы ветра и скорости вращения колеса.

Ветроустановки классифицируются по двум основным признакам: геометрии ветроколеса и его положению относительно направления ветра. Если ось вращения ветроколеса параллельна воздушному потоку, то установка называется горизонтально-осевой, если перпендикулярно-вертикально-осевой.

Принцип действия ветроэнергетической установки состоит в следующем. Ветряное колесо, воспринимая на себя энергию ветра, вращается и посредством пары конических шестерен и с помощью длинного вертикального вала передает свою энергию на нижний горизонтальный трансмиссионный вал и далее посредством второй пары конических шестерен и ременной передачи - электрическому генератору или другому механизму.

Поскольку периоды безветрия неизбежны, то для исключения перебоев в электроснабжении ВЭУ должны иметь аккумуляторы электрической энергии или быть запараллелены, на случаи безветрия, с электроэнергетическими установками других типов.

Энергетическая программа Республики Беларусь до 2010 г основными направлениями использования ветроэнергетических ресурсов на ближайший период предусматривает их применение для привода насосных установок и в качестве источников энергии для электродвигателей. Эти области применения характеризуются минимальными требованиями к качеству электрической энергии, что позволяет резко упростить и удешевить ветроэнергетические установки. Особенно перспективным считается их использование в сочетании с малыми гидроэлектростанциями для перекачки воды. Применение ветроэнергетических установок для водоподъёма, электроподогрева воды и электроснабжения автономных потребителей к 2010 г. предполагается довести до 15 МВт установленной мощности, что обеспечит экономию 9 тыс. т у т. в год.

Гидроэлектростанция.

Гидроэнергетика представляет отрасль науки и техники по использованию энергии движущийся воды (как правило, рек) для производства электрической, а иногда и механической энергии. Это наиболее развитая область энергетики на возобновляемых ресурсах.

Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию. Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках, сооружая плотины и водохранилища.

В гидроэлектростанции кинетическая энергия падающей воды используется для производства электроэнергии. Турбина и генератор преобразовывают энергию воды в механическую энергию, а затем - в электроэнергию. Турбины и генераторы установлены либо в самой дамбе, либо рядом с ней.

Рис. 14. Принципиальная схема гидроэлектростанции.

Энергия - это то, благодаря чему существует жизнь не только на нашей планете, но и во Вселенной. При этом она может быть очень разной. Так, тепло, звук, свет, электричество, микроволны, калории представляют собой различные виды энергии. Для всех процессов, происходящих вокруг нас, необходима эта субстанция. Большую часть энергии все сущее на Земле получает от Солнца, но имеются и другие ее источники. Солнце передает ее нашей планете столько, сколько бы выработали одновременно 100 млн самых мощных электростанций.

Что такое энергия?

В теории, выдвинутой Альбертом Эйнштейном, изучается взаимосвязь материи и энергии. Этот великий ученый смог доказать способность одной субстанции превращаться в другую. При этом выяснилось, что энергия является самым важным фактором существования тел, а материя вторична.

Энергия - это, по большому счету, способность выполнять какую-то работу. Именно она стоит за понятием силы, способной двигать тело или придавать ему новые свойства. Что же означает термин «энергия»? Физика - это фундаментальная наука, которой посвятили свою жизнь многие ученые разных эпох и стран. Еще Аристотель использовал слово «энергия» для обозначения деятельности человека. В переводе с греческого языка «энергия» - это «деятельность», «сила», «действие», «мощь». Первый раз это слово появилось в трактате ученого-грека под названием «Физика».

В общепринятом сейчас смысле данный термин был введен в обиход английским ученым-физиком Это знаменательное событие произошло в далеком 1807 году. В 50-х годах XIX в. английский механик Уильям Томсон впервые использовал понятие «кинетическая энгергия», а в 1853 г. шотландский физик Уильям Ренкин ввел термин «потенциальная энергия».

Сегодня эта скалярная величина присутствует во всех разделах физики. Она является единой мерой различных форм движения и взаимодействия материи. Другими словами, она представляет собой меру преобразования одних форм в другие.

Единицы измерения и обозначения

Количество энергии измеряется Эта специальная единица в зависимости от вида энергии может иметь разные обозначения, например:

  • W - полная энергия системы.
  • Q - тепловая.
  • U - потенциальная.

Виды энергии

В природе существует множество самых разных видов энергии. Основными из них считаются:

  • механическая;
  • электромагнитная;
  • электрическая;
  • химическая;
  • тепловая;
  • ядерная (атомная).

Есть и другие виды энергии: световая, звука, магнитная. В последние годы все большее число ученых-физиков склоняются к гипотезе о существовании так называемой «темной» энергии. Каждый из перечисленных ранее видов данной субстанции имеет свои особенности. Например, энергия звука способна передаваться при помощи волн. Они способствуют возникновению вибрации барабанных перепонок в ухе людей и животных, благодаря которой можно слышать звуки. В ходе различных химических реакций высвобождается энергия, необходимая для жизнедеятельности всех организмов. Любое топливо, продукты питания, аккумуляторы, батарейки являются хранилищем этой энергии.

Наше светило дает Земле энергию в виде электромагнитных волн. Только так она может преодолеть просторы Космоса. Благодаря современным технологиям, таким как солнечные батареи, мы можем использовать ее с наибольшим эффектом. Излишки неиспользованной энергии аккумулируются в особых энергохранилищах. Наряду с вышеперечисленными видами энергии часто используются термальные источники, реки, океана, биотопливо.

Механическая энергия

Этот вид энергии изучается в разделе физики, называемом «Механикой». Она обозначается буквой Е. Ее измерение осуществляется в джоулях (Дж). Что собой представляет эта энергия? Физика механики изучает движение тел и взаимодействие их друг с другом либо с внешними полями. При этом энергия, обусловленная движением тел, называется кинетической (обозначается Ек), а энергию, обусловленную или внешних полей, именуют потенциальной (Еп). Сумма движения и взаимодействия представляет собой полную механическую энергию системы.

Для расчета обоих видов существует общее правило. Для определения величины энергии следует вычислить работу, необходимую для перевода тела из нулевого состояния в данное состояние. При этом чем больше работа, тем большей энергией будет обладать тело в данном состоянии.

Разделение видов по разным признакам

Существует несколько видов разделения энергии. По разным признакам ее делят на: внешнюю (кинетическую и потенциальную) и внутреннюю (механическую, термическую, электромагнитную, ядерную, гравитационную). Электромагнитная энергия в свою очередь подразделяется на магнитную и электрическую, а ядерная - на энергию слабого и сильного взаимодействия.

Кинетическая

Любые движущиеся тела отличаются наличием кинетической энергии. Она часто так и называется - движущей. Энергия тела, которое движется, теряется при его замедлении. Таким образом, чем быстрее скорость, тем больше кинетическая энергия.

При соприкосновении движущегося тела с неподвижным объектом последнему передается часть кинетической, приводящая и его в движение. Формула энергии кинетической следующая:

  • Е к = mv 2: 2,
    где m — масса тела, v - скорость движения тела.

В словах эту формулу можно выразить следующим образом: кинетическая энергия объекта равна половине произведения его массы на квадрат его скорости.

Потенциальная

Этим видом энергии обладают тела, которые находятся в каком-либо силовом поле. Так, магнитная возникает, когда объект находится под действием магнитного поля. Все тела, находящиеся на земле, обладают потенциальной гравитационной энергией.

В зависимости от свойств объектов изучения они могут иметь различные виды потенциальной энергии. Так, упругие и эластичные тела, которые способны вытягиваться, имеют потенциальную энергию упругости либо натяжения. Любое падающее тело, которое было ранее неподвижно, теряет потенциальную и приобретает кинетическую. При этом величина этих двух видов будет равнозначна. В поле тяготения нашей планеты формула энергии потенциальной будет иметь следующий вид:

  • Е п = mhg,
    где m — масса тела; h - высота центра массы тела над нулевым уровнем; g - ускорение свободного падения.

В словах эту формулу можно выразить так: потенциальная энергия объекта, взаимодействующего с Землей, равна произведению его массы, ускорению свободного падения и высоты, на которой оно находится.

Эта скалярная величина является характеристикой запаса энергии материальной точки (тела), находящейся в потенциальном силовом поле и идущей на приобретение кинетической энергии за счет работы сил поля. Иногда ее называют функцией координат, являющейся слагаемым в лангранжиане системы (функция Лагранжа динамической системы). Эта система описывает их взаимодействие.

Потенциальную энергию приравнивают к нулю для некой конфигурации тел, расположенных в пространстве. Выбор конфигурации определяется удобством дальнейших вычислений и называется «нормировкой потенциальной энергии».

Закон сохранения энергии

Одним из самых основных постулатов физики является Закон сохранения энергии. В соответствии с ним, энергия ниоткуда не возникает и никуда не исчезает. Она постоянно переходит из одной формы в другую. Иными словами, происходит только изменение энергии. Так, например, химическая энергия аккумулятора фонарика преобразуется в электрическую, а из нее - в световую и тепловую. Различные бытовые приборы превращают электрическую в свет, тепло или звук. Чаще всего конечным результатом изменения являются тепло и свет. После этого энергия уходит в окружающее пространство.

Закон энергии способен объяснить многие Ученые утверждают, что общий объем ее во Вселенной постоянно остается неизменным. Никто не может создать энергию заново или уничтожить. Вырабатывая один из ее видов, люди используют энергию топлива, падающей воды, атома. При этом один ее вид превращается в другой.

В 1918 г. ученые смогли доказать, что закон сохранения энергии представляет собой математическое следствие трансляционной симметрии времени - величины сопряженной энергии. Другими словами, энергия сохраняется вследствие того, что законы физики не отличаются в различные моменты времени.

Особенности энергии

Энергия - это способность тела совершать работу. В замкнутых физических системах она сохраняется на протяжении всего времени (пока система будет замкнутой) и представляет собой один из трех аддитивных интегралов движения, сохраняющих величину при движении. К ним относятся: энергия, момент Введение понятия «энергия» целесообразно тогда, когда физическая система однородна во времени.

Внутрення энергия тел

Она представляет собой сумму энергий молекулярных взаимодействий и тепловых движений молекул, составляющих его. Ее нельзя измерить напрямую, поскольку она является однозначной функцией состояния системы. Всегда, когда система оказывается в данном состоянии, ее внутренняя энергия имеет присущее ему значение, независимо от истории существования системы. Изменение внутренней энергии в процессе перехода из одного физического состояния в другое всегда равно разности между ее значениями в конечном и начальном состояниях.

Внутренняя энергия газа

Помимо твердых тел, энергию имеют и газы. Она представляет собой кинетическую энергию теплового (хаотического) движения частиц системы, к которым относятся атомы, молекулы, электроны, ядра. Внутренней энергией идеального газа (математической модели газа) является сумма кинетических энергий его частиц. При этом учитывается число степеней свободы, представляющее собой число независимых переменных, определяющих положение молекулы в пространстве.

С каждым годом человечество потребляет все большее количество энергоресурсов. Чаще всего для получения энергии, необходимой для освещения и отопления наших жилищ, работы автотранспорта и различных механизмов, используются такие ископаемые углеводороды, как уголь, нефть и газ. Они относятся к невозобновимым ресурсам.

К сожалению, только незначительная часть энергии добывается на нашей планете с помощью возобновимых ресурсов, таких как вода, ветер и Солнце. На сегодняшний день их удельный вес в энергетике составляет всего 5 %. Еще 3 % люди получают в виде ядерной энергии, производимой на атомных электростанциях.

Имеют следующие запасы (в джоулях):

  • ядерная энергия - 2 х 10 24 ;
  • энергия газа и нефти - 2 х 10 23 ;
  • внутренне тепло планеты - 5 х 10 20 .

Годовая величина возобновляемых ресурсов Земли:

  • энергия Солнца - 2 х 10 24 ;
  • ветер - 6 х 10 21 ;
  • реки - 6,5 х 10 19 ;
  • морские приливы - 2,5 х 10 23 .

Только при своевременном переходе от использования невозобновляемых запасов энергии Земли к возобновляемым человечество имеет шанс на долгое и счастливое существование на нашей планете. Для воплощения передовых разработок ученые всего мира продолжают тщательно изучать разнообразные свойства энергии.

Прежде чем говорить об основных мероприятиях, обеспечивающих энергосбережение, т.е. выяснить, как можно сберечь энергию, необходимо четко определить, что представляет собой понятие "энергия"?

Энергия (греч. - действие, деятельность) - общая количественная мера различных форм движения материи.

Из данного определения вытекает:

Энергия - это нечто, что проявляется лишь при изменении состояния (положения) различных объектов окружающего нас мира;

Энергия - это нечто, способное переходить из одной формы в другую;

Энергия характеризуется способностью производить полезную для человека работу;

Энергия - это нечто, что можно объективно определить, количественно измерить.

Энергию в естествознании в зависимости от природы делят на следующие виды.

Механическая энергия - проявляется при взаимодей­ствии, движении отдельных тел или частиц.

К ней относят энергию движения или вращения тела, энер­гию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах - транспортных и технологических.

Тепловая энергия - энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ.

Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).

Для сопоставления различных видов топлива и суммарного учета его запасов, оценки эффективности использования энергетических ресурсов, сравнения показателей теплоиспользующих устройств принята единица измерения - условное топливо , теплота сгорания которого принята за 29,33 МДж/кг (7000 ккал/кг). Для сравнительного анализа обычно используется единица измерения тонна условного топлива.

1т у.т.= 29,33·10 9 Дж = 7·10 6 ккал = 8,12·10 3 кВт·ч

Этот показатель соответствует хорошему малозольному углю, который иногда называется угольным эквивалентом. За рубежом для анализа используется условное топливо с теплотой сгорания 41,9 Мдж/кг. Этот показатель называется нефтяным эквавалентом.

Электрическая энергия - энергия движущихся по элек­трической цепи электронов (электрического тока).

Электрическая энергия применяется для получения механической энергии с помощью электродвигателей и осуществления механических процессов обработки материалов: дробления, измельчения, перемешивания; для проведения элек­трохимических реакций; получения тепловой энергии в элек­тронагревательных устройствах и печах; для непосредствен­ной обработки материалов (электроэррозионная обработка).

Химическая энергия - это энергия, "запасенная" в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами.

Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии ха­рактеризуются высоким КПД (до 98 %), но низкой емкостью.

Магнитная энергия - энергия постоянных магнитов, об­ладающих большим запасом энергии, но "отдающих" ее весь­ма неохотно. Однако электрический ток создает вокруг себя протяженные, сильные магнитные поля, поэтому чаще всего говорят об электромагнитной энергии.

Электрическая и магнитная энергии тесно взаимосвязаны друг с другом, каждую из них можно рассматривать как "оборотную" сторону другой.

Электромагнитная энергия - это энергия электромагнитных волн, т.е. движущихся электрического и магнитного по­лей. Она включает видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны.

Таким образом, электромагнитная энергия - это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия - энергия, локализованная в ядрах атомов так называемых радиоактивных веществ. Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер (термоядерная реакция).

Бытует и старое название данного вида энергии - атомная энергия, однако это название неточно отображает сущность явлений, приводящих к высвобождению колоссальных количеств энергии, чаще всего в виде тепловой и механической.

Гравитационная энергия - энергия, обусловленная взаимодействием (тяготением) массивных тел, она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, "запасенная" телом, поднятым на определенную высоту над поверхностью Земли - энергия силы тяжести.

Таким образом, в зависимости от уровня проявления, можно выделить энергию макромира - гравитационную, энергию взаимодействия тел - механическую, энергию молекулярных взаимодействий - тепловую, энергию атомных взаимодействий - химическую, энергию излучения - электромагнитную, энергию, заключенную в ядрах атомов - ядерную.

Современная наука не исключает существование и других видов энергии, пока не зафиксированных, но не нарушающих единую естественнонаучную картину мира и понятие об энергии.

По большому счету понятие энергии, идея о ней искусственны и созданы специально для того, чтобы быть результатом наших размышлений об окружающем мире. В отличие от материи, о которой мы можем сказать, что она существует, энергия - это плод мысли человека, его "изобретение", построенное так, чтобы была возможность описать различные изменения в окружающем мире и в то же время говорить о постоянстве, сох­ранении чего-то, что было названо энергией, даже если наше представление об энергии будет меняться из года в год.

Единицей измерения энергии является 1 Дж (Джоуль). В то же время для измерения количества теплоты используют "старую" единицу - 1 кал (калория) = 4,18 Дж, для измерения механической энергии используют величину 1 кг·м = 9,8 Дж, электрической энергии - 1 кВт·ч = 3,6 МДж, при этом 1 Дж = 1 Вт·С.

Необходимо отметить, что в естественнонаучной литерату­ре тепловую, химическую и ядерную энергии иногда объеди­няют понятием внутренней энергии, т.е. заключенной внутри вещества.


Top