Методы улучшения качества питьевой воды. Способы улучшения состава воды К основным методам улучшения качества воды относятся

КАФЕДРА ОБЩЕЙ ГИГИЕНЫ

ВЛАДИКАВКАЗ 2011

Составители:

Ø ассистент Ф.К. Худалова,

Ø ассистент А.Р. Наниева.

Рецензенты:

Утверждено ЦКУМС ГБОУ ВПО СОГМА Минздравсоцразвития РФ

«____» _________________2011г., протокол №

Цель занятия: изучить методы очистки и обеззараживания воды, научиться проводить пробную коагуляцию и пробное хлорирование воды.

Студент должен знать:

Методы улучшения качества воды (проведения пробного хлорирования, обеззараживания воды с применением различных способов хлорирования);

Студент должен уметь:

Оценить целесообразность и эффективность методов по улучшению качества воды;

Использовать основные нормативные документы и информационные источники справочного характера для разработки гигиенических рекомендаций по применению схемы очистки воды, предназначенной для хозяйственно-питьевого пользования, и необходимых методов обработки воды с учетом качества воды источника, его санитарного состояния и территории вокруг него.

Основная литература:

Ø Румянцев Г.И. Гигиена XXI век, М., 2008.

Ø Пивоваров Ю.П., Королик В.В., Зиневич Л.С. гигиена и основы экологии человека. М., 2004.

Ø Лакшин А.М., Катаева В.А. Общая гигиена с основами экологии человека: Учебник. – М.: Медицина, 2004 (Учеб.лит. для студентов мед.вузов).

Ø Авчинников А.В. Гигиеническая оценка современных способов обеззараживания питьевой воды// Гигиена и санитария. - 2001.-.С. 11-20.

Ø Красовский Г.Н., Егорова Н.А. Хлорирование воды как фактор повышенной опасности для здоровья населения// гигиена и санитария – 2003. - №1.

Дополнительная литература:

Ø Пивоваров Ю.П. Руководство к лабораторным занятиям и основами экологии человека, 2004 г.

Ø Катаева В.А., Лакшин А.М. Руководство к практическим и самостоятельным занятиям по общей гигиене и основам экологии человека. М.: Медицина, 2005

Ø СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества»


Качество питьевой воды служит основой эпидемиологической безопасности и здоровья населения. Доброкачественная по химическим, микробиологическим, органолептическим и эстетическим свойствам вода является показателем высокого санитарного благополучия и жизненного уровня населения. Учитывая огромное значение качества и количества подаваемой питьевой воды для здоровья населения и условий его проживания, обеспечения нормального функционирования детских, лечебно-профилактических, культурных, спортивных и других учреждений, коммунального хозяйства, промышленных предприятий и других объектов представляется важным внедрение прогрессивных мероприятий в сфере питьевого водоснабжения.

Основная цель методов улучшения качества питьевой воды - защита потребителя от патогенных организмов и примесей, которые могут быть опасны для здоровья человека или иметь неприятные свойства (цвет, запах, вкус и т. д.). Методы очистки следует выбирать с учетом качества и характера источника водоснабжения.

Основные способы улучшения качества воды

Основными способами улучшения качества воды поверхностных водоисточников являются осветление, обесцвечивание и обеззараживание.

Осветление воды - это удаление из нее взвешенных веществ.

Обесцвечивание - устранение окрашенных коллоидов.

Обеззараживание - обезвреживание содержащихся в воде источника патогенных бактерий и вирусов.

Для осветления и обесцвечивания применяют следующие способы:

Ø естественное отстаивание и фильтрация на медленных фильтрах;

Ø коагуляция, отстаивание и фильтрация на быстрых фильтрах;

Ø коагуляция и фильтрация в контактных осветлителях.

Методы очистки воды

Основная задача очистки воды - полностью освободить ее от взвеси (мутности), сделать прозрачной (осветлить) и снизить цветность до незаметного уровня.В современных условиях большое значение имеет предварительное удаление из воды зоопланктона (мельчайших животных организмов) и фитопланктона (мельчайших растительных организмов). Для этого используют микрофильтры и барабанные сетки, через которые производится процеживание воды.

Для осветления и обесцвечивания в комплекс сооружений по очистке воды входят: отстойники, смесители, камеры реакции, фильтры и т.д.

Отстойники (горизонтальные, вертикальные) - сооружения, предназначенные для осаждения под силой тяжести в основном крупных по размеру и массе частиц, находящихся в воде во взвешенном состоянии.

Схема горизонтального отстойника

Недостатком естественного осаждения взвеси в отстойниках является длительность этого процесса, при котором не обеспечивается осаждение основной части мелкой взвеси и всех коллоидных частиц. С целью ускорения и повышения эффективности выпадения взвешенных веществ и удаления коллоидных веществ в отстойниках перед отстаиванием производится коагуляция воды.

Схема вертикального отстойника:

1 - подача воды;

2 - отвод воды;

3 - сброс осадка;

4 - камера хлопьеобразования;

5 - кольцевой сборный лоток;

6 - отражательный конус.

Коагуляцией называется процесс укрупнения, агрегации коллоидных и тонко диспергированных примесей воды, происходящий вследствие взаимного слипания под действием сил молекулярного притяжения. Процесс коагуляции завершается образованием видимых невооруженным глазом агрегатов - хлопьев.

Коагуляция происходит под влиянием химических реагентов - коагулянтов, к которым относятся соли алюминия (алюминия сульфат A1 2 (SO 4) 3 ,) и железа (железа сульфат, железа хлорид). Для ускорения процесса коагуляции применяют вещества флоккулянты.

Фильтрация - это следующий после коагуляции и отстаивания процесс для освобождения воды от взвешенных веществ, оставшихся после первых этапов очистки. Сущность фильтрации заключается в пропуске воды через мелкопористый материал, на поверхности, в верхнем слое или в толще которого задерживаются взвешенные частицы.

Фильтр представляет собой железобетонный резервуар, заполненный фильтрующим материалом обычно в два слоя. В качестве фильтрующего материала используют кварцевый песок, антрацитовую крошку, керамзит (дробленый и недробленый), некоторые вулканические шлаки, пенополистирол и другие.

Существует два метода фильтрации воды.

1. Пленочная фильтрация предполагает образование биологической пленки из ранее задержанных примесей в верхнем слое фильтрующей загрузки. В начале, вследствие механического осаждения частиц взвеси и их прилипания к поверхности загрузочного материала (например песка), уменьшается размер пор. Затем на поверхности песка развиваются водоросли, бактерии и другие живые организмы, дающие начало илистому, состоящему из минеральных и органических веществ осадку (биологическая пленка). Пленка достигает толщины 0,5-1 мм и более. Она играет решающую роль в работе медленных фильтров, задерживает мельчайшие взвеси, 95-99 % бактерий, обеспечивает снижение на 20-45 % окисляемости и на 20 % цветности.

2. Объемная фильтрация осуществляется на скорых фильтрах и представляет собой физико-химический процесс, при котором механические примеси воды проникают в толщу фильтрующей загрузки и адсорбируются на поверхности ее частиц и хлопьев коагулянта. В результате уменьшения размеров пор возрастает сопротивление загрузки при фильтровании и потеря напора. В процессе объемной фильтрации задерживается около 95 % бактерий. Скорые фильтры, пропуская большее количество воды, быстро засоряются и чаще требуют очистки.

Двухслойный фильтр

Для очистки вод с незначительной мутностью и высоким содержанием органических соединений, которые плохо поддаются обработке в отстойниках и осветлителях, эффективным методом очистки является флотация.

Флотация - это процесс, сущность которого заключается в том, что коллоидные и дисперсные примеси соединяются с пузырьками воздуха, тонко диспергированного в воде. Комплексы, которые образуются при этом, всплывают и образуют пену на поверхности флотационного устройства. Снижение поверхностного натяжения на границе вода-воздух приводит к повышению эффективности очистки воды методом флотации. Для этого в воду добавляют поверхностно-активные вещества (флотореагенты).

В случае организации централизованной подачи питьевой воды в небольшие объекты (поселки, пансионаты, дома отдыха и т.д.) при использовании в качестве источника водоснабжения поверхностных водоемов для очистки воды могут применяться компактные сооружения небольшой производительности. В их состав входят: трубчатый отстойник, фильтр с зернистой загрузкой, оборудование для приготовления и дозирования реагентов и бак для промывной воды.

На современных станциях очистки воды в случае использования реагентных технологических схем ввод химических реагентов в обрабатываемую воду осуществляется системами автоматического дозирования. Они включают емкости реагентов, дозирующие насосы с микропроцессорными регуляторами и впрыскивающие клапаны.

Дозирующий насос химических реагентов с микропроцессорным регулятором и впрыскивающим клапаном

Методы обеззараживание воды

Обеззараживание (дезинфекция) питьевой воды осуществляется с целью обеспечения эпидемической безопасности питьевой и предотвращения передачи через воду возбудителей инфекционных заболеваний. Обеззараживание направлено на уничтожение патогенных и условно-патогенных микроорганизмов. В целях обеззараживания применяют реагентные (химические) и безреагентные (физические) методы.

Реагентные методы основаны на использовании сильных окислителей (хлора, хлорсодержащих веществ, озона), ионов серебра и других веществ.

К безреагентным методам относятся: ультрафиолетовое облучение, воздействие ультразвука, вакуума, радиоактивное излучение то есть физические методы, а также термическая обработка. На водопроводах обычно обеззараживание воды осуществляется на последнем этапе ее очистки перед поступлением в резервуары чистой воды и разводящую водопроводную сеть. Выбор конкретного метода обеззараживания зависит от качества и количества исходной воды, методов ее предварительной очистки, условий поставки реагентов и других факторов.

Хлорирование - обработка питьевой воды водным раствором хлора с целью ее обеззараживания. Этот метод стал наиболее широко распространен среди всех методов обеззараживания воды. Это связано с относительной дешевизной хлора, несложностью используемого оборудования и надежностью обеззараживающего действия.

При обычных температуре и давлении хлор - газ желто-зеленого цвета с резким специфическим запахом. Раздражает слизистые оболочки, глаза, относится к сильнодействующим ядовитым веществам (СДЯВ) и при выбросе в воздух способен вызвать отравления людей.

Хлор можно использовать для обеззараживания воды на различных сооружениях - от шахтного колодца до крупного водопровода. В целях обеззараживания воды могут применяться газообразный хлор (доставляется в баллонах в жидком состоянии), хлорная известь, гипохлорит кальция, хлорамины, двуокись хлора и другие хлорсодержащие вещества.

Основными условиями действия хлора являются: тщательное освобождение воды от взвешенных веществ, достаточная доза хлора, полное и быстрое перемешивание хлора со всем объемом обеззараживаемой воды и контакт хлора с водой не менее 30-60 мин времени, необходимого для проявления бактерицидного действия. Для обеспечения надежного обеззараживания необходимо ввести его такое количество, чтобы покрыть всю хлорпоглощаемость воды и получить некоторый избыток свободного активного хлора. Об успешности хлорирования воды судят по остаточному активному хлору. Установлено, что дозы хлора в воде 1-3 мг/л обычно обеспечивают достаточный бактерицидный эффект. При этом содержание остаточного свободного хлора в воде после резервуаров чистой воды должно быть в пределах 0,3-0,5 мг/л. Такое хлорирование называется обычным, или хлорированием с учетом хлорпотребности.

Хлорпоглощаемость воды - количество хлора, которое при хлорировании 1 л воды расходуется на окисление органических, легкоокисляющихся неорганических веществ и обеззараживание бактерий в течение 30 минут.

Хлорпотребностъ воды - общее количество хлора, необходимое для удовлетворения хлорпоглощаемости воды и обеспечения наличия необходимого количества остаточного хлора.

Виды хлорирования

Разновидностью хлорирования на водопроводах являются двойное хлорирование и суперхлорирование (перехлорирование).

При двойном хлорировании хлор вводится в воду дважды: первый раз в смеситель перед отстойниками и второй - после фильтров, применяется, например, в случае использования для питьевого водоснабжения речной воды с высокой бактериальной загрязненностью.

Суперхлорирование - хлорирование воды избыточными дозами хлора (5-20 мг/л) при остаточном содержании активно: до 1-5 мг/л. Применяется временно при резких колебаниях бактериальной загрязненности воды, в случае особой эпидемической обстановки и при невозможности обеспечить достаточный контакт воды с хлором.

При наличии высокого содержания остаточного хлора вода считается непригодной непосредственно для употребления и требует последующего дехлорирования ее химическим веществами (гипосульфит или сернистый газ) или сорбционным методом (активированный уголь).

Одним из способов обеззараживания воды является аммонизация (хлорирование с преаммонизацией), при которой в воду последовательно вводят сначала аммиак, а затем хлор. Хлорирование с преаммонизациеи используют с целью предотвращения появления специфических запахов в случае хлорирования воды, содержащей фенол или бензол, а также для пресечения образования канцерогенных веществ (хлороформ и др.) во время хлорирования воды при наличии в ней гуминовых и других веществ.

Несмотря на положительные стороны применения хлора для обеззараживания питьевой воды, в последние годы выявлены и отрицательные последствия хлорирования воды для здоровья населения.

В результате реакции хлора с находящимися в воде гуминовыми соединениями, продуктами жизнедеятельности некоторых организмов и веществами техногенного происхождения в воде могут образовываться высокотоксичные, канцерогенные и мутагенные вещества. К ним относятся: тригалометаны (ТГМ), в том числе хлороформ, бромоформ, дибромхлорметан и другие.

Необходимо учитывать, что некоторые из образующихся в воде вредных веществ поступают в организм не только в процессе употребления воды и пищевых продуктов (энтерально), но и через неповрежденную кожу во время принятия душа, ванны, плавания в бассейне. Поэтому важным направлением в решении назревшей проблемы является применение других, альтернативных хлорированию, способов обеззараживания питьевой воды.

Озонирование - обработка воды озоном для уничтожения микроорганизмов и устранения неприятных запахов.

Озон (O 3) - газ голубоватого цвета со специфическим запахом, очень хорошо растворим в воде. Обладает высокой окислительной способностью, которая обуславливает его бактерицидность. Действует на протоплазму микроорганизмов, уничтожает вирусы (в частности, полиомиелита).

Озонатор – аппарат (генератор) для получения озона, используемого с целью обеззараживания воды

Озонирование по сравнению с хлорированием имеет следующие основные преимущества:

Ø надежное обеззараживание достигается в течение нескольких минут, при этом озон эффективнее хлора обеззараживает воду от споровых форм бактерий и возбудителей вирусных инфекций;

Ø озон, а также продукты его соединения с веществами, находящимися в воде, не имеют вкуса и запаха;

Ø происходит обесцвечивание воды и устранение ранее имевшихся запахов различного происхождения;

Ø избыточный озон через несколько минут превращается в кислород, выделяющийся в атмосферный воздух, и поэтому не оказывает влияния на организм человека;

Ø при этом значительно меньше, чем при хлорировании образуется новых токсических веществ;

Ø процесс озонирования в меньшей степени, чем хлорирование зависит от рН, мутности, температуры и других свойств воды;

Ø производство озона на месте избавляет от необходимости доставки и хранения реагентов.

Недостатки озонирования. Озон является взрывоопасным и токсичным реагентом, это более дорогой способ по сравнению с хлорированием. Быстрое разложение в отработанной воде (за 20-30 минут) ограничивает его применение, после озонирования нередко наблюдается значительный рост микрофлоры вследствие реактивации бактерий и вторичного загрязнения. Даже высокие дозы озона (20 мг/л) и длительная экспозиция (1,5-2 часа) не обеспечивают полностью эффективное обеззараживание в отношении бактериальных спор. При обработке воды озоном могут образовываться побочные токсичные продукты: броматы, альдегиды, кетоны, карбоновые кислоты и др. соединения. Эти продукты могут вызывать мутагенный и другие неблагоприятные эффекты.

Обеззараживание воды ионами серебра основано на олигодинамическом действии этого металла. Серебро обладает свойством консервировать воду на длительное время. Согласно опубликованным данным, вода, обработанная серебром в концентрации 0,1 мг/л, сохраняет высокие санитарно-гигиенические показатели в течение года и более.

Обеззараживание серебром осуществляется непосредственно путем обеспечения контакта воды с поверхностью металла или в результате растворения солей серебра в воде электролитическим способом. Во втором случае используются ионаторы, обеспечивающие растворение серебра под действием постоянного электрического тока.

Ионаторы используют для обеззараживания воды на крупных судах. Высокую оценку воде, обработанной серебром, дали космонавты. Практика показала, что обработка бортовых запасов питьевой воды серебром обеспечивает сохранность ее органолептических и гигиенических свойств в условиях космических полетов различной продолжительности. Серебро оказалось также прекрасным консервантом минеральной воды. Поэтому на престижных предприятиях по производству безалкогольных напитков минеральную воду обеззараживают серебром.

Однако несмотря на богатую информацию об антимикробных свойствах серебра, широкое его внедрение в практику водоснабжения сдерживалось по различным причинам, в том числе недостаточными сведениями о его токсичности.

Ультрафиолетовое облучение. Бактерицидное действие ультрафиолетовых (УФ) лучей, широко известно и неоднократно доказано в экспериментах. УФ лучи проникают через 25 см слой прозрачной и бесцветной воды. Под воздействием УФ излучения в клетках находящихся в воде микроорганизмов происходят необратимые процессы, вызывающие нарушение молекулярных и межмолекулярных связей. Это приводит к денатурации (разрушению) белков клеток протоплазмы, в частности, к повреждению ДНК, РНК, клеточных мембран, и как следствие, к гибели микроорганизмов. Образующиеся под воздействием УФ излучения короткоживущие молекулы озона, атомарный кислород, свободные радикалы и гидроксильные группы дополнительно воздействуют на находящиеся в воде микроорганизмы.

Метод УФ обеззараживания не изменяет химического состава и органолептических качеств воды. Достоинством метода является также быстрота обеззараживания (несколько секунд) и отсутствие запаха и привкуса при использовании ультрафиолетовых лучей. Лучи пагубно воздействуют не только на вегетативные формы патогенных бактерий, которые погибают после облучения в течение 1-2 мин, но также на устойчивые к хлору споры, вирусы и яйца гельминтов. Многочисленные исследования показали отсутствие вредных эффектов даже при дозах УФ облучения, намного и превышающих практически необходимые. Следовательно, в отличие от технологии хлорирования и озонирования, принципиально отсутствует опасность передозировки УФ облучения. В то же время имеются сведения о том, что если доза УФ излучения выбрана правильно, активация микроорганизмов не наблюдается, что позволяет применять УФ обеззараживание без последующего ввода консервирующих доз хлора.

Технология обеззараживания воды УФ облучением является наиболее простой в реализации и обслуживании. Для обеззараживания воды УФ облучением характерны незначительные затраты электроэнергии (в 3-5 ниже, чем при озонировании) и отсутствие потребности в дорогостоящих реактивах.

Для обеззараживания воды применяют установки с ртутно-кварцевыми лампами высокого давления и аргоно-ртутные лампы низкого давления. Лампы помещаются над потоком облучаемой воды или в самой воде. В первом случае они снабжены отражателем для направленного облучения, во втором лучи распространяются по окружности во все стороны.

Установка УФ обеззараживания питьевой воды

Несмотря на многие положительные стороны использования ультрафиолетового облучения для обеззараживания питьевой воды, необходимо учитывать, что повышенные мутность, цветность и соли железа уменьшают проницаемость воды для бактерицидных УФ лучей. Поэтому для обеззараживания УФ облучением в большей степени пригодны воды из подземных источников с содержанием железа не более 0,3 мг/л, невысокими мутностью и цветностью. При необходимости УФ обеззараживания воды из поверхностных и некоторых подземных источников требуется ее предварительная очистка (осветление, обесцвечивание, обезжелезивание и др.).

Обеззараживание воды ультразвуком. Бактерицидное действие ультразвука объясняется, в основном, механическим разрушением клеточной оболочки бактерий в ультразвуковом поле. При этом бактерицидный эффект связан с интенсивностью ультразвуковых колебаний и не зависит от мутности (до 50 мг/л) и цветности. Эффект обеззараживания распространяется не только на вегетативные, но и на споровые формы микроорганизмов.

Для получения необходимых для обеззараживания воды ультразвуковых колебаний используют пьезоэлектрические и магнитнострикционные устройства. Продолжительность обеззараживающего действия ультразвука длится секунды.

Обеззараживание воды вакуумом предусматривает обеззараживание бактерий и вирусов пониженным давлением. При этом полный бактерицидный эффект может быть достигнут за 15-20 мин.

Радиационное обеззараживание воды. Ионизирующим (проникающим) излучением называется коротковолновое рентгеновское и γ-излучение, поток высокоэнергетических заряженных частиц (электроны, протоны, дейтроны, α-частицы и ядра отдачи), а также быстрых нейтронов (частицы, не имеющие зарядов). Взаимодействуя с электронными оболочками атомов и молекул среды, они передают им часть своей энергии, производя ионизацию молекул. Освободившиеся при этом электроны, как правило, обладают значительной энергией, которая расходуется на ионизацию еще нескольких молекул воды.

Ионизирующее излучение является мощным безреагентным фактором, действие которого приводит к гибели имеющихся в облучаемой воде болезнетворных микроорганизмов и ее обеззараживание. Первичные продукты радиолиза воды нарушают обмен веществ в бактериальной клетке.

Радиационная очистка и обеззараживание воды имеют следующие преимущества по сравнению с традиционными методами обработки:

ü универсальность, то есть возможность обезвреживать многие органические и любые микробные загрязнители;

ü высокую степень обеззараживания и очистки;

ü высокую скорость обработки и возможность полной автоматизации.

Однако учитывая загрязнение водных объектов специфическими техногенными веществами и по другим причинам, практическое распространение получают комбинированные методы, когда радиационная обработка воды используется совместно с традиционными методами обеззараживания (хлорированием или озонированием).

Термическое обеззараживание воды применяется в основном для обеззараживания небольшого количества воды в детских учреждениях (школах, дошкольных учреждениях, пионерских и летних лагерях), санаториях, больницах, на судах, а также в домашних условиях.

Установлено, что полное обеззараживание моды (уничтожение всех видов и форм болезнетворных микроорганизмов) достигается только в результате кипячения воды в течение 5-10 минут. Однако нужно учитывать, что кипяченая вода лишена не только болезнетворных, но и сапрофитных, безвредных или даже полезных для человека микроорганизмов. В такой воде легко размножаются попавшие в нее уже после кипячения и охлаждения микроорганизмы, что приводит к быстрому ухудшению ее качества. Поэтому кипяченую воду следует сохранять в плотно закрытых емкостях в прохладном месте не более 24 часов.

Фильтрующий кувшин

Плюсы: фильтр-кувшин очень прост в использовании, не требует подключения к водопроводу, процесс очистки не нужно контролировать.

Минусы: небольшой объем очищенной воды (от 1 до 2 л), низкая скорость очистки.

Отличный абсорбент - уголь - поглощает хлор, хлорорганические и органические загрязнения, а дополнительная обработка его серебром предотвращает размножение бактерий.

И фильтр, и чайник

Вполне естественным решением было объединить в одном сосуде, чайник и фильтр для наполняющей его воды. Электрочайник соединяет в себе функции фильтрации и смягчения воды, с фильтрами очистки воды, позволяющими максимально быстро и качественно очистить водопроводную воду от хлора и других примесей, препятствуя образованию накипи.

Насадка на кран

Принцип действия: водоочиститель надевается непосредственно на кран, вода подается в него под давлением.

Плюсы: невысокая цена, удобен для использования.

Минусы: низкая производительность (0,3-0,5 л/мин), необходимо использовать емкость для хранения очищенной воды. Если фильтр не снабжен переключателем, придется включать и выключать его каждый раз вручную.

Практическая работа №1

Контрольно-обучающие тесты

1. Наиболее распространенный способ обеззараживания питьевой воды на водопроводной станции:

а) хлорирование;

б) УФ-облучение;

в) озонирование.

2. При обеззараживании питьевой воды хлорсодержащими препаратами органолептические свойства воды могут:

а) улучшаться;

б) ухудшаться;

в) не изменяться.

3. К физическим методам обеззараживания относятся:

а) использование перекиси водорода;

в) кипячение;

д) олигодинамическое действие серебра.

4. Специальные методы улучшения качества питьевой воды:

а) дезактивация;

б) осветление;

в) дезодорация;

г) дегазация;

д) очистка.

5. Ориентировочные значения дозы хлора при хлорировании нормальными дозами:

а) 1-5 мг/л;

б) 10-15 мг/л;

в) 20-30 мг/л.

6. Методы обеззараживания питьевой воды:

а) коагулирование;

б) хлорирование;

в) фторирование;

г) озонирование;

д) обработка ультрафиолетовыми лучами.

7. Показаниями к применению способа хлорирования с преаммонизацией являются:

а) высокое микробное загрязнение;

б) предупреждение провоцирования запахов;

в) неблагоприятная эпидобстановка по кишечным инфекциям;

г) протяженная водопроводная сеть;

д) невозможность обеспечения достаточного времени контакта воды с хлором.

8. Преимущества озона перед хлором при обеззараживании питьевой воды:

а) улучшает органолептические свойства воды;

б) улучшает органолептические свойства воды и требует меньшего времени контакта;

в) улучшает органолептические свойства воды, требует меньшего времени контакта, более эффективен по отношению к патогенным простейшим.

9. При обеззараживании питьевой воды УФ-излучением органолептические свойства воды могут:

а) улучшаться;

б) ухудшаться;

в) не изменяться.

10. При обеззараживании воды хлорсодержащими препаратами ее органолептические свойства:

а) ухудшаются;

б) не изменяются;

в) улучшаются.

Контрольные вопросы

1. Как классифицируются методы повышения качества питьевой воды?

2. Как производится коагуляция воды? Какие вы знаете коагулянты?

3. Как производится отстаивание воды?

4. Какие вы знаете фильтры, чем они отличаются друг от друга?

5. Охарактеризуйте реагентные способы обеззараживания питьевой воды.

6. Перечислите методы хлорирования. Каковы преимущества и недостатки каждого из них?

7. Что такое хлорпоглощаемость и хлорпотребность воды?

8. В чем заключается гигиеническое значение содержания в питьевой воде остаточного хлора?

9. Как производится определение содержания активного хлора в хлорной извести?

10. Как производится определение дозы хлорной извести по остаточному хлору?

11. Охарактеризуйте физические методы улучшения качества питьевой воды.

12. Какие вы знаете дополнительные методы повышения качества питьевой воды?

13. Проведите сравнительную оценку физических и химических методов улучшения качества питьевой воды.

14. Какие вам известны комбинированные методы повышения качества питьевой воды?


Министерства здравоохранения и социального развития РФ»

КАФЕДРА ОБЩЕЙ ГИГИЕНЫ

МЕТОДЫ УЛУЧШЕНИЯ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ

ВЛАДИКАВКАЗ 2011

Составители:

Ø д.м.н., профессор А.Р. Кусова,

Ø ассистент Ф.К. Худалова,

Ø ассистент А.Р. Наниева.

Рецензенты:

Ø Ф.В. Каллагова - профессор, д.м.н., зав. кафедрой общей и биоорганической химии;

Ø Туаева И.Ш. - к.м.н., доцент кафедры гигиены медико-профилактического факультета с эпидемиологией и курсом ФПДО


Общие

1. Осветление (устранении мутности)

2. Обесцвечивание

3. Обеззараживание

Очистка по 2-схемам:

1. Отстаивание, медленная фильтрация

2. Коагуляция, отстаивание, быстрая фильтрация

1. Вода в течение 4-8 часов очень медленно передвигается по горизонтальным отстоям, в результате все крупные, взвешенные частицы оседают на дно. Далее вода попадает на медленный фильтр – крупногабаритные сооружения, имеющие несколько слоев:

а) подстилающий.

б) песок. V = 0,1 – 0,3 м/ч – фильтрация.

В процессе работы фильтра происходит его «созревание», на поверхности его образуется пленка, эффективность повышается, скорость снижается. 99,5% - эффективность обеззараживание.

2. Воду подвергают коагуляции, образовавшиеся в воде хлопья, имеющие заряд, на них адсорбируются взвешенные частицы и вместе с хлопьями выпадают в осадок. Реагенты: сернокислый Al, Fe. Al –образует соединения с бикарбонатом.

Первый этап. Определение бикарбонатной жесткости (количество Al). Реакция вялая, мало хлопьев – имеющие излишки сернокислого алюминия, необходимо ввести щелочь для ускорения реакции. При попадании в воду образуется коллоидный раствор.

После коагуляции воду направляют на быстрые фильтры, скорость в 50-100 раз выше, чем на медленных.

Эффективность обеззараживания 95%.

Обеззараживание:

Применяется физические, химические, механические методы.

а) Химические методы – хлорирование, гидрохлорирование, использование действия солей тяжелых металлов.

б) Механический метод – фильтрация через специальные свечи (Шамберлана)

в) Физический метод – УФ облучние.

Специальные методы

Специфические методы для обеззараживания:

1. Дезодарация – устранение неприятного вкуса и запаха.

2. Дегазация

3. Фторирование

4. Умягчение

5. Ожелезивание

6. Оппеснение

Реагенты: Газообразный хлор, Cl – известь, ДТСГК – двутреть соль гипохлорида Cа.

Хлорирование – остается нормальная доза Cl, но после этого происходит избавление воды от избытка F.

Cl-потребность – количество мл активного Cl необходимого для нормы обеззараживания воды.

Связный хлор идет на обеззараживание, свободный остаток хлора составляет 0,5-0,3 мг/л.

0,3-0,5 – количество хлора существенно не изменяет органические свойства воды, но свидетельствует о полноте обеззараживания.

Связный Cl не более 0,8 мг/л.

Остаточный азот 0,3-0,5 мг/л.

Выбор источника водоснабжения

В 1948 г. был принят ГОСТ «Источники централизованного хозяйственного водоснабжения 27.84»

Подземные источники делят на классы, в зависимости от методов улучшения качества воды

1. Удовлетворяющие всем требованиям САНПИНа.

2. ПО некоторым показателям имеют отклонения (аэрирование, фильтрирование, обеззараживание).

3. Имеют требования САНПИНа что и первое, но фильтрирование происходит с предварительным отстаиванием.

Поверхностные источники:

1 класс – обеззараживание, фильтрация, коагуляция.

2 класс – коагулирование, отстаивание, обеззараживание.

3 класс – то что и 2 класс, только с применением полиэффекторных методов фильтрации.

Места децентрализованного водоснабжения :

В сельской местности, при наличии источника подземных вод. Устанавливают или рытые или буровые колодцы.

Рытые колодцы.

Почву охраняют от затопления, заболачивания. Стенки колодца более проницаемы, возвышение над поверхностью не менее 80 см. Вокруг колодца на глубину 2 м и ширину 100 на 70 убирают грунт, заполняют глиной. Забор воды должен осуществляться так, что бы не выносились загрязнения.

Буровые колодцы – бурят землю, наверху устанавливают электронасос.

Достоинства: увеличена глубина, стенки не проницаемы.

Обследование колодца:

1. Санитарно-эпидемиологический (выявление заболеваний передающихся через воду)

2. Санитарно-технический

Обработка воды в колодце:

После ремонта

При наличии инфекционных заболеваний

Временное хлорирование при загрязнении грунтовых вод 1,5 – 2 л/на 1 м колодца.

Непрерывное – из объема 0,25-1 л в подвод добавляют 150-600 гр извести, раствор диффундирует в течении 30 суток.



Чтобы довести качество воды источников водоснабжения до требований СанПиН – 01 существуют методы обработки воды, которые проводят на водопроводных станциях.

Существуют основные и специальные методы улучшения качества воды.

I . К основным методам относятся осветление, обесцвечивание и обеззараживание.

Под осветлением понимают устранение из воды взвешенных частиц. Под обесцвечиванием понимают устранение из воды окрашенных веществ.

Осветление и обесцвечивание достигается 1) отстаиванием, 2) коагуляцией и 3) фильтрацией. После прохождения воды из реки через водозаборные решетки, в которых остаются крупные загрязнители, вода поступает в большие емкости – отстойники, при медленном протекании через которые за 4-8 час.на дно выпадают крупные частицы. Для осаждения мелких взвешенных веществ вода поступает в емкости, где коагулируется – добавляется в нее полиакриламид или сульфат алюминия, который под влиянием воды становится, подобно снежинкам, хлопьями, к которым прилипают мелкие частицы и адсорбируются красящие вещества, после чего они оседает на дно резервуара. Далее вода идет на конечную стадию очистки – фильтрацию: медленно пропускается через слой песка и фильтрующую ткань – тут задерживаются оставшиеся взвешенные вещества, яйца гельминтов и 99% микрофлоры.

Методы обеззараживания

1.Химические: 2.Физические:

-хлорирование

- использование гипохлорида натрия-кипячение

-озонирование -У\Ф облучение

-использование серебра -ультразвуковая

обработка

- использование фильтров

Химические методы.

1.Наиболее широкое распространение получил метод хлорирования . Для этого используется хлорирование воды газом (на крупных станциях) или хлорной известью (на мелких). При добавлении хлора к воде он гидролизуется, образуя хлористоводородную и хлорноватистую кислоты, которые, легко проникая через оболочку микробов, убивают их.

А) Хлорирование малыми дозами.

Сущность этого метода заключается в выборе рабочей дозы по хлорпотребности или величине остаточного хлора в воде. Для этого проводится пробное хлорирование – подбор рабочей дозы для небольшого количества воды. Заведомо берутся 3 рабочие дозы. Эти дозы добавляют в 3 колбы по 1 литру воды. Вода хлорируется летом 30 минут, зимой 2 часа, после чего определяется остаточный хлор. Его должно быть 0,3-0,5 мг/л. Это количество остаточного хлора, с одной стороны, свидетельствует о надёжности обеззараживания, а с другой – не ухудшает органолептические свойства воды и не является вредным для здоровья. После этого рассчитывают дозу хлора, необходимого для обеззараживания всей воды.

Б) Гиперхлорирование.

Гиперхлорирование – остаточный хлор - 1-1,5 мг/л, применяемое в период эпидемической опасности. Очень быстрый, надёжный и эффективный метод. Проводится большими дозами хлора до 100 мг/л с обязательным последующим дехлорированием. Дехлорирование проводят, пропуская воду через активированный уголь. Этот метод применяют в военно-полевых условиях.В походных условиях пресную воду обрабатывают таблетками с хлором: пантоцидом, содержащим хлорамин (1 табл. – 3 мг активного хлора), или аквацидом (1 табл. – 4 мг); а также с йодом - йод-таблетки (3 мг активного йода). Необходимое к применению число таблеток рассчитывается в зависимости от объема воды.

В)Обеззараживание воды нетоксичным и неопасным гипохлоридом натрия применяется вместо хлора, являющимся опасным в использовании и ядовитым. В Петербурге до 30% питьевой воды обеззараживается этим методом, а в Москве с 2006 г. начался перевод на него всех водопроводных станций.

2.Озонирование.

Применяется на небольших водопроводах с очень чистой водой. Озон получают в специальных аппаратах – озонаторах, а затем пропускают его через воду. Озон более сильный окислитель, чем хлор. Он не только обеззараживает воду, но и улучшает её органолептические свойства: обесцвечивает воду, устраняет неприятные запахи и привкусы. Озонирование считается лучшим методом обеззараживания, но этот метод очень дорогой, поэтому чаще используют хлорирование. Озонаторная установка требует сложного оборудования.

3.Использование серебра. «Серебрение» воды с помощью специальных приборов путем электролитической обработки воды. Ионы серебра эффективно уничтожают всю микрофлору; консервируют воду и позволяют ее долго хранить, что используется в длительных экспедициях на водном транспорте, у подводников для сохранения питьевой воды в течение продолжительного времени. Лучшие бытовые фильтры используют серебрение в качестве дополнительного метода обеззараживания и консервации воды

Физические методы.

1.Кипячение. Очень простой и надёжный метод обеззараживания. Недостаток этого метода заключается в невозможности использовать этот метод для обработки больших количеств воды. Поэтому кипячение широко применяют в быту;

2.Использование бытовых приборов - фильтров, обеспечивающих несколько степеней очистки; адсорбирующих микроорганизмы и взвешенные вещества; нейтрализующих ряд химических примесей, в т.ч. жесткость; обеспечивающих поглощение хлора и хлорорганических веществ. Такая вода обладает благоприятными органолептическими, химическими и бактериальными свойствами;

3. Облучение У\Ф лучами. Является наиболее эффективным и широко распространенным способом физического обеззараживания воды. Достоинства этого метода заключаются в быстроте действия, эффективности уничтожения вегетативных и споровых форм бактерий, яиц гельминтов и вирусов. Бактерицидным действием обладают лучи с длиной волны 200-295 нм. Для обеззараживания дистиллированной воды в больницах и аптеках используются аргонно-ртутные лампы. На больших водопроводах применяются мощные ртутно-кварцевые лампы. На малых водопроводах используются непогружные установки, а на больших – погружные, мощностью до 3000 м 3 /час. УФ-облучение очень зависит от взвешенных веществ. Для надежной работы УФ-установок необходима высокая прозрачность и бесцветность воды и действуют лучи только через тонкий слой воды, что ограничивает применение этого метода. УФ-облучение чаще применяется для дезинфекции питьевой воды на артскважинах, а также рециркулируемой воды на плавательных бассейнах.

II. Специальные методы улучшения качества воды.

-опреснение,

-умягчение,

-фторирование - При недостатке фтора проводится фторирование воды до 0,5 мг/л, путем добавления в воду фтористого натрия или других реагентов. В РФ в настоящее время имеются лишь единичные системы фторирования питьевой воды, тогда как в США 74% населения получают фторсодержащую водопроводную воду,

-обезфторивание - При избытке фтора воду подвергают дефрорированию методами осаждения фтора, разбавлением или ионной сорбцией,

дезодорация (устранение неприятных запахов),

-дегазация,

-дезактивация (освобождение от радиоактивных веществ),

-обезжелезивание - Для снижения жесткости воды артезианских скважин применяют кипячение, реагентные методы и метод ионного обмена.

На артскважинах удаление соединений железа (обезжелезивание ) и сероводорода (дегазация ) осуществляется аэрацией с последующей сорбцией на специальном грунте.

К маломинерализованной воде добавляются минеральные вещества. Этот метод применяется при изготовлении бутилированной минеральной воды, реализуемую через торговую сеть. Кстати, потребление питьевой воды, приобретаемой в торговой сети, возрастает во всем мире, что особенно актуально для туристов, а также для жителей неблагополучных местностей.

Для снижения общей минерализации подземных вод применяют дистилляцию, ионную сорбцию, электролиз, вымораживание.

Следует отметить, что указанные специальные методы обработки (кондиционирования) воды высокотехнологичны и дороги и применяются лишь в случаях, когда нет возможности использовать для водоснабжения приемлемого источника.

Практическое занятие

МИНИСТЕРСТВО ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ ГЛАВНОЕ ВОЕННО-МЕДИЦИНСКОЕ УПРАВЛЕНИЕ

ВОЕННО-МЕДИЦИНСКАЯ АКАДЕМИЯ

(ВМедА)

Экз.№

№ госрегистрац.

Инв. № ________

УТВЕРЖДАЮ Начальник академии Заслуженный деятель науки РФ, доктор медицинских наук, профессор генерал-майор медицинской службы Б. Гайдар

ВрИД начальника НИЦ ВМедА доктор медицинских наук профессор полковник медицинской службы

С. Пелешок

ВрИД начальника НИО питания и водоснабжения НИЦ ВМедА кандидат медицинских наук полковник медицинской службы

В. Майдан

Научный руководитель ВрИД заместителя начальника НИО питания и водоснабжения НИЦ ВМедА кандидат медицинских наук майор медицинской службы

Ответственный исполнитель старший научный сотрудник НИО питания и водоснабжения НИЦ ВМедА кандидат биологических наук

Е. Сорокалетова

САНКТ-ПЕТЕРБУРГ 2002

СПИСОК ИСПОЛНИТЕЛЕЙ

Научный руководитель работы|: ВрИД заместителя начальника НИО питания и водоснабжения кандидат медицинских наук майор медицинской службы

Ответственный исполнитель: старший научный сотрудник НИО питания и водоснабжения кандидат биологических наук

Е. Сорокалетова

(реферат, введение, 18.03.2002г. разделы 1, 2, 3, заключение)

Е. Гвардина

Младший научный сотрудник НИО питания и водоснабжения

Е. Кравченко (раздел 1)

Младший научный сотрудник НИО питания и водоснабжения

И. Коновалова

Доцент кафедры ОВГ кандидат медицинских наук

В. Нарыков

18.03.2002г. (раздел 1, реферат, введение, заключение)

Начальник научно-исследовательского отдела доктор медицинских наук профессор полковник медицинской службы

С. Матвеев

РЕФЕРАТ

Отчет - 77 стр., 1 кн., 20 табл., 146 ист.

КАЧЕСТВО ВОДЫ, ОЧИСТКА ВОДЫ, ПРИРОДНЫЕ

МИНЕРАЛЬНЫЕ СОРБЕНТЫ

Объектом исследования являлись природные минеральные сорбен­ты (ПМС), перспективные для применения в процессах очистки и кон­диционирования воды: шунгит, кремень, глауконитовый известняк.

Цель работы

При проведении НИР современными биологическими и физико-хи­мическими методами показано, что ПМС эффективно очищают воду от загрязнений. Для очистки воды от ионов тяжелых металлов наиболее перспективными ПМС оказались кремень и глауконитовый известняк. Их эффективность превосходит активированный уголь (АУ) и шунгит.

Все изученные ПМС удаляют фенол из воды в концентрации до 50 ПДК. При более высоких концентрациях фенола эффективность шунгита выше, чем кремня и глауконитового известняка при всех пара­метрах модельной воды.

ПМС очищают воду от избыточного содержания ионов железа, причем шунгит по эффективности превосходит АУ, кремень и глауконитовый известняк в 2 раза.

ПМС имеют выраженные сорбционные свойства в отношении бакте­рий Е. соli штамм К12, спор В. subtilis и С. реrfringes, снижая со­держание микробных агентов не менее, чем в тысячу раз.

Шунгит проявляет специфическую активность в устранении из воды частиц радикальной и ион-радикальной природы, значительно превосходя в этом отношении как кремень и глауконитовый извест­няк, так и АУ (в 56, 36 и 31 раз соответственно).

Вода, обработанная ПМС, улучшает свое качество за счет глубо­кой очистки от химических загрязнений, снижения токсичности, а также повышает биологическую активность за счет обогащения эссенциальными макро - и микроэлементами.

Технологии и очистные устройства, использующие ПМС не уступая, а в ряде случаев превосходя по эффективности АУ, на порядок дешевле по себестоимости. Россия располагает мощной сырьевой базой ПМС, что делает их использование перспективным в водоочистке.

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ, УСЛОВНЫХ ОБОЗНАЧЕНИЙ,

СИМВОЛОВ, ЕДИНИЦ И ТЕРМИНОВ

активированный уголь

всемирная организация здравоохранения

индекс загрязненности воды

поверхностно-активные вещества

предельно-допустимая концентрация

природные минеральные сорбенты

хлорорганические пестициды

ВВЕДЕНИЕ...........................................................................

1. КАЧЕСТВО ПИТЬЕВОЙ ВОДЫ И СПОСОБЫ ЕГО УЛУЧШЕНИЯ

(Выбор направления исследований) .......................................

1.1. Качество воды водоисточников............................................

1.2. Существующие и перспективные способы улучшения качества воды...............................................................................

1.3. Природные минеральные сорбенты - перспективные материалы в процессах улучшения качества воды......................................

1.3.1. Углеродсодержащие породы - шунгиты.................

1.3.2. Кремнеземные и кремнистые породы....................

1.3.1. Карбонатные породы........................................

2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ...............................

3. ЭКОЛОГО-ГИГИЕНИЧЕСКОЕ ИЗУЧЕНИЕ ПРИМЕНЕНИЯ ПРИРОДНЫХ МИНЕРАЛЬНЫХ СОРБЕНТОВ ДЛЯ УЛУЧШЕНИЯ КАЧЕСТВА ВОДЫ.........................................................

3.1. Влияние природных минеральных сорбентов на органолептические свойства воды.............................................

3.2. Влияние природных минеральных сорбентов на химический состав воды.....................................................................

3.2.1. Неорганические токсиканты.......................................

3.2.2. Органические токсиканты.........................................

3.3. Влияние природных минеральных сорбентов на микробиологичекие показатели воды....................................

3.4. Токсико-гигиеническая оценка воды, прошедшей фильтрацию через фильтры, содержащие природные минеральные сорбенты.........................................................................

3.5. Биологическое действие воды, активированной кремнем..............

ЗАКЛЮЧЕНИЕ............................................................................

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ.................................

ВВЕДЕНИЕ

Актуальность настоящего исследования связана с усилением антропогенного и техногенного влияния на биосферу в Российской Федерации /1-7/.

Наибольший пресс экотоксичности испытывает водная среда, яв­ляясь конечным резервуаром большинства загрязняющих веществ. За последние 30 лет изменилась структура использования воды, что вы­разилось в резком увеличении социальной составляющей водопользо­вания. Доля хозяйственно-питьевого водоснабжения выросла с 9% в 1970 г. до 21% в 1999 г. /8/. В связи с этим реально существует проблема качества питьевой воды, определяемая загрязнением при­родной воды, неудовлетворительной очисткой ее на водопроводных станциях, вторичным загрязнением в разводящих сетях. В сложившей­ся на сегодняшний день ситуации наиболее перспективным подходом к обеспечению населения РФ и личного состава ВС качественной пить­евой водой является применение средств и методов дополнительной очистки и подготовки воды в месте использования, в том числе, в местах дислокации сил армии и флота /9/.

В настоящее время водоочистка становится одним из самых распространенных технологических процессов. Этим определяется особенная актуальность вопроса удешевления очистки питьевой, тех­нической и сточных вод. В этой связи весьма перспективным предс­тавляется применение природных сорбентов, месторождения которых имеются на территории РФ. В литературе появляется все больше со­общений об эффективности применения природных сорбентов для уда­ления из воды дисперсных примесей, нефти и нефтепродуктов, по­верхностно-активных веществ, красителей, радиоактивных загрязне­ний и др. /10÷16/.

Сегодня при использовании природных сорбентов для удаления из воды указанных веществ, как правило, господствует эмпирический подход, что затрудняет проведение технологических процессов в оп­тимальных условиях.

В этой связи необходима разработка научных основ использова­ния природных сорбентов в водоподготовке, для чего следует сумми­ровать имеющиеся сведения об их применении, а также наметить ра­циональные пути их использования в конкретных технологических процессах водоочистки.

Цель работы заключалась в экспериментальной оценке эффектив­ности использования природных минеральных сорбентов для очистки и кондиционирования воды.

Для достижения указанной цели необходимо решить следующие задачи:

1. Оценить эффективность природных минеральных сорбентов в процессах очистки питьевой воды от химических и микробиологичес­ких загрязнений.

2. Изучить токсико-гигиенические показатели воды, прошедшей очистку на природных минеральных сорбентах (ПМС).

3. Изучить биологическое действие воды, прошедшей очистку на ПМС.

4. Оценить возможность применения ПМС для индивидуальной и коллективной доочистки питьевой воды.

Настоящая работа выполнена в НИЛ перспективных технологий очистки воды НИО питания и водоснабжения НИЦ Военно-медицинской академии с января 2000 по март 2002 года в соответствии с Дирек­тивой ГВМУ МО РФ № 000/7/4/3979 от 05.08.99 г.

В НИР нашли свое развитие исследования, проводившиеся в Во­енно-медицинской академии в 1993 ÷ 2001 годах и получившие отраже­ние в ряде отчетов, статей и монографии /17÷24/.

1. КАЧЕСТВО ПИТЬЕВОЙ ВОДЫ И СПОСОБЫ ЕГО ЛУЧШЕНИЯ (Выбор направления исследований)

1.1. Качество воды водоисточников

По данным Государственного водного кадастра наиболее расп­ространенными загрязняющими веществами поверхностных вод суши яв­ляются нефтепродукты, фенолы, хлорорганические пестициды (ХОП), легкоокисляемые органические вещества, соединения меди и цинка. В некоторых районах обнаруживаются комплексы никеля, аммонийный и нитритный азот , а также специфические поллютанты, характерные для отдельных производств - лигнин, лигносульфонаты, ксантогенаты, метилмеркаптан, анилин /25/.

В последние годы на фоне некоторого снижения валового объема водоотведения прослеживается тенденция к увеличению удельного ве­са сбрасываемых в водные объекты неочищенных сточных вод /8/. По данным Минприроды общий объем загрязненных сточных вод, сбрасыва­емых в водоемы составляет 28 км3/год, из них нормативно очищенных только 10% (2,8 км3). В коммунальном хозяйстве очищается только 13% стоков. В водоемы страны ежегодно сбрасывается 1000 т цинка, 700 т никеля, 150 т меди и хрома и 120 т кадмия. Данного коли­чества токсикантов достаточно для загрязнения более 500 км3 воды, что сопоставимо с годовым стоком рек России /26÷28 /.

В ряде мест среднегодовая концентрация загрязняющих веществ превышает 5 ПДК по трем и более показателям (в р. Неве - д. Новосаратовка, р. Нарве - г. Иван-город, р. Онеге - с. Порог, р. Сев. Двине - с. Усть-Пинега) /25/.

В водохранилище Пролетарское - Ростовская обл ., р. Пелымма, р. Обь и др. среднегодовая концентрация нефтепродуктов, фенолов, соединений меди составила не менее 30 ПДК /25/.

Случаи экстремально высокого уровня загрязненности воды наб­людались в р. Пуртсе (фенолы 213÷240 ПДК), р. Косьве (соединения железа - 157 ПДК, соединения меди - 160 ПДК), р. Чусовой (соедине­ния хрома - 720 ПДК), Братском вдхр. (метилмеркаптан - 300-500 ПДК), р. Клязьме (нефтепродукты - 176 ПДК), р. Охинке (нефтепродукты - 120 ПДК) /25/.

Особую опасность представляют аварийные ситуации на произ­водствах, когда в воду попадают вредные вещества в концентрациях до 1000 ПДК /29, 30/.

Сельскохозяйственное производство также вносит свой вклад в загрязнение водоисточников.

Из общего количества применяемых в сельском хозяйстве ХОП 1÷5% поступают в поверхностные воды, около 5% мигрируют в нижние горизонты почвы и подземные воды. Наиболее высокий уровень загрязнения воды ХОП отмечен в бассейнах Волги, Оби, Амура, Урала, Днепра, Терека, Пясины. Высокие концентрации ХОП отмечены в водных объектах не только зон интенсивного земле­делия и производства ХОП, но и в районах, где их применение от­сутствовало или было минимальным, что свидетельствует о глобаль­ном распространении ХОП /31/.

Большинство водных объектов РФ служат источниками питьевого водоснабжения, поэтому рост загрязненности природных вод все бо­лее обостряет проблему обеспечения населения доброкачественной питьевой водой /7/.

Обследование водозаборов городов показало, что для некоторых из них характерно загрязнение воды, классифицируемое как "высо­кое" и "чрезвычайно высокое". Особая опасность возникает там, где загрязнение обусловлено наличием высокотоксичных соединений (Томский, Тюменский, Курганский водозаборы) /29/.

Проблемы с обеспечением питьевой водой существуют и в Севе­ро-Западном регионе РФ. Источником водоснабжения населения Санкт-Петербурга и части Ленинградской области служит Ладожское озеро. В то же время в Ладожское озеро поступают сточные воды от предприятий промышленности и агропромышленного комплекс а огромных территорий (Ленинградской, Псковской, Новгородской, Тверской, Ар­хангельской и Витебской областей , республики Карелии и части Фин­ляндии). Общий объем загрязненных сточных вод, поступающих в озеро, составляет 400 млн. м3 в год. Стоки содержат более 600, из ко­торых 300 - токсичны. В результате состояние озерной экосистемы приблизилось к критическому /32/.

Под влиянием хозяйственной деятельности, ведущейся на бере­гах Ладожского озера и его водосборе, водоем к середине 80-ых годов XX века перешел из олиготрофного в мезатрофное состояние. При сохранении антропогенной нагрузки на современном уровне озеро может в ближайшие десятилетия превратиться в эвтрофный водоем, что будет иметь катастрофические последствия для водоснабжения Санкт-Петербурга. Уже сейчас река Нева, являясь практически единственным источником питьевого водоснабжения Санкт-Петербурга, загрязнена на всем протяжении. Даже у истока в результате эвтрофирования Ладожского озера наблюдается повышенное содержание токсикантов. Превышение ПДК установлено по нефтепродуктам, свинцу, кадмию, кобальту, никелю, хрому, цинку, мышьяку, бериллию, тита­ну, ртути /33 ÷ 35/.

Кроме того, Нева является важной транспортной артерией и ни­чем не защищена от техногенных аварий. Так, в результате аварии с нефтеналивным танкером в устье Невы осенью 1999 г. мазутом была загрязнена вся акватория реки, а на дне создалось депо токсичных веществ /24/.

Стремительное ухудшение качества воды Ладожского озера, про­должающееся поступление загрязненных сточных вод, определяют ка­чество поступающей в Санкт-Петербург невской воды. Класс качества воды в фоновом створе в 2 км выше города снизился и они характе­ризуются как IV класс ("загрязненные"). Увеличение индекса заг­рязненности воды (ИЗВ) произошло в основном за счет возростания среднегодовых концентраций летучих фенолов. Так, концентрация фе­нолов в фоновом створе составила 7 ПДК, а в целом по р. Неве - 10 ПДК. Наибольшая загрязненность вод фенолами наблюдалась в устье Невы: в пробах, отобранных в феврале, июне и августе. Их концент­рации составили 40÷50 ПДК /ЗЗ/. Максимальная концентрация фенолов (70 ПДК) была зафиксирована в водах Невы в створе, расположенном ниже впадения р. Ижоры.

Воды Невы загрязнены медью и марганцем почти во всех ство­рах. Так, среднегодовые концентрации составляют: меди - 4,7÷6,45 ПДК, марганца - 1,1÷3,3 ПДК. Максимальная концентрация меди (19 ПДК) зафиксирована в одном из самых грязных створов, расположен­ном ниже впадения р. Охты, марганца (9,5 ПДК) - в устье Невы /36/.

Хроническое действие токсических веществ на водные системы в регионе проявляется повсеместно. Идет интенсивное накопление токсикантов в гидробионтах и их передача по пищевым цепям. По данным ГосНИОРХ в Волховской губе Ладожского озера у 70÷80% особей сига, судака, леща, плотвы и ерша наблюдаются токсикозы, достигающие по степени выраженности 2÷4 баллов. В этом же районе ткани 20÷60% исследованных рыб имеют запах нефтепродуктов. В Свирской губе от­равления отмечались у 50÷60% рыб. Хронические интоксикации заре­гистрированы у 30÷60% рыб из устьевого участка р. Видлица. У рыб наблюдаются выраженные необратимые патологические изменения в жизненно важных органах: кардиомиопатия, гиперемия мозга, зернис­тая дистрофия печени, новообразования в различных органах. Отмеча­ется высокая гибель и нарушения в развитии молоди /36/.

Вследствие вышеизложенного, более надежным источником водос­набжения являются подземные воды /37÷39/. Качество подземных вод определяется двумя группами факторов: геологическими и антропогенными. Первая группа факторов обусловливает качество подземных вод, связанное с составом водовмещающих пород, физико-химически­ми условиями их формирования и циркуляции, степенью защищенности водоносных горизонтов перекрывающими глинистыми экранами от по­верхностного загрязнения. Вторая группа факторов связана со сте­пенью техногенной нагрузки, условиями хозяйствования и наличием очагов загрязнения /40/. В настоящее время загрязнение гидросферы коснулось не только поверхностных водоисточников, но и подземных вод. В результате попадания в них различных коммунальных отходов, веществ с крупных свалок химических отходов и т. д. (особенно в районах концентрации предприятий газо-нефтедобывающей промыш­ленности) /41÷44/.

Использование подземных вод в Северо-Западном регионе отста­ет от среднеевропейских показателей, хотя регион располагает не­обходимыми для этого водными ресурсами. Естественное качество подземных вод в регионе чрезвычайно разнообразно - от ультрапрес­ных вод с недостаточным содержанием ряда компонентов до слабоми­нерализованных вод, находящихся на грани возможного использования для питьевых целей /43, 44/.

Подземные воды обладают цельм рядом специфических особенностей. С одной стороны они способны самоочищаться, с другой - аккумулируют и распространяют загрязняющие элементы на значительные расстояния. Водоносные горизонты Северо-Западного региона в раз­ной степени защищены от поверхностного загрязнения. Наряду с ра­йонами, где они перекрыты водоупорными отложениями, и, тем самым, защищены от загрязнений (Карельский перешеек, девонское поле Ле­нинградской области и т. д.), выделяются районы с практически незащищенными водными ресурсами (Карелия, Ижорское плато). Особенно значительно подземные воды загрязнены на территории Гатчинского, Волосовского, Ломоносовского, Сланцевского, Кингисепского райо­нов, где широкое развитие получили трещинно-карстовые подземные воды, обладающие слабой степенью защищенности от агентов загряз­нения с поверхности /43, 44/.

Для улучшения водоснабжения городов и других населенных пунктов предлагаются следующие долгосрочные мероприятия /14/:

Улучшение состояния и обеспечение соблюдения режимов зон санитарной охраны и водоохранных зон источников питьевого водос­набжения;

Усиления контроля качества воды в источнике водоснабжения, создание системы автоматического и оперативного контроля, разра­ботка методик и средств определения более широкого спектра и комплексных показателей загрязненности воды в источнике;

Разработка и внедрение адресной программы по ликвидации основных источников загрязнения водного источника;

Создание системы автоматического контроля за сбросом заг­рязнений;

Разработка мероприятий по снижению влияния поверхностного стока на водоисточник;

Разработка математической модели водного источника с уче­том гидрохимических данных и биохимических процессов самоочище­ния, с целью прогнозирования качества воды при изменении входных параметров, увеличении или снижении сбросов загрязнений, авариях и в других ситуациях;

Определение приоритетных водоохранных мероприятий с их технико-экономической оценкой на основе математического моделиро­вания различных ситуаций;

Выбор вариантов альтернативных водозаборов, увеличение числа водозаборных сооружений;

Использование дополнительных источников для водоснабжения города, в частности, подземных вод.

Все эти мероприятия требуют для своего осуществления значи­тельных материальных ресурсов достаточного временного интервала.

1.2. Существующие и перспективные способы улучшения качества воды

Централизованное водоснабжение большинства населенных пунктов России преимущественно ведется из поверхностных водоисточни­ков, характеризующихся высоким уровнем загрязнения /45/.

Существующие сооружения водоподготовки и применяемые технологические процессы часто уже не в состоянии обеспечить требуемое качество питьевой воды, поскольку рассчитаны на уровни загрязнения поверхностных вод, существовавшие 40÷50 лет назад и, в основном, направлены на улучшение прежде всего органолептических и микроби­ологических показателей качества воды.

В отечественном хозяйственно-питьевом водоснабжении используются типовые технологические схемы очистки: в зависимости от степени загрязненности исходной воды - двухступенчатая (отстойни­ки или осветлители со слоем взвешенного осадка - на первой ступе­ни и скорые фильтры - на второй ступени) или одноступенчатая (контактные осветлители или прямоточные фильтры) /45, 46/. Рассматривая эти схемы с современных позиций, можно отметить их не­достаточную надежность и эффективность. В первую очередь это обусловлено тем, что в их применяются устаревшие сооружения и реагентные методы очистки. Применяемые технологии очищают воду, в основном, от дисперсных частиц. Молекулярно растворенные вещества и ионы остаются в воде. Таким образом, многие токсичные вещества не улавливаются на водоочистных сооружениях и попадают в водопро­водную сеть /47/.

Необходимо отметить, что существующие технологические схемы способны оказывать негативное воздействие. Так, применяемые в хо­де водоподготовки для обеззараживания воды процедуры хлорирования и озонирования, в случае наличия в воде органических соединений, приводят к появлению высокотоксичных веществ.

В результате хлорирования воды, содержащей гуминовые вещест­ва фенольной природы, образуются хлорфенолы, хлороформ и даже диоксины /48, 49/. Появление в питьевой воде токсичных продуктов озонирования - формальдегида, бензальдегида, ацетальдегида, также может быть обусловлено физико-химическими характеристиками природных вод. Озонирование воды, в которой присутствуют пестици­ды, может привести к появлению более токсичных и стабильных недоокисленных эпоксидов с ненасыщенными двойными связями. Например, элдрин окисляется до диэлдрина, гептахлор до гептахлорэпоксида /50/.

Исследование содержания хлорорганических соединений в водо­заборе г. Питкяранта и г. Приозерск (Ладожское озеро) и в водопро­водной воде показало, что в процессе водоподготовки (хлорирова­ния) в 39 раз возросла концентрация хлороформа, в 5 раз - четы­реххлористого углерода, в 4,5 раза - 1,2-дихлорэтана, в 4,4 раза - тетрахлорэтана, в 8,3 раза - хлорбензола, появились трихлорэтан и трихлорфенол (табл.1.) /48/.

Таблица 1.

Вещество

Водозабор, мкг/л

Питьевая вода, мкг/л

ПДК, мкг/л

Хлороформ

Четыреххлорис­тый углерод

1,2-дихлорэтан

Трихлорэтан

Тетрахлорэтан

Бромдихлорэтан

Трихлорфенол

Хлорбензол

Примечание: ВОЗ - всемирная организация здравоохранения

Методы улучшения качества питьевой воды

Методы обработки воды, с помощью которых достигается доведение качества воды источников водоснабжения до требований СанПиН 2.1.4.2496-09 ʼʼПитьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабженияʼʼ, зависят от качества исходной воды водоисточников и подразделяются на основные и специальные. Основными способами являются˸

Осветление

Обесцвечивание

Обеззараживание

Под осветлением и обесцвечиванием понимается устранение из воды взвешенных веществ и окрашенных коллоидов (в основном, гумусовых веществ). Путем обеззараживания устраняют содержащиеся в воде водоисточника инфекционные агенты – бактерии, вирусы и др.

В тех случаях, когда применение только основных способов недостаточно, используют специальные методы очистки (обезжелезивание, обесфторивание, обессоливание и др.), а также введение некоторых необходимых для организма человека веществ – фторирование, минерализация обессоленных и маломинерализованных вод.

В отношении удаления химических веществ наиболее эффективным является метод сорбционной очистки на активных углях, сорбционная очистка также значительно улучшает органолептические свойства воды.

Методы обеззараживания воды подразделяются на˸

1. Химические (реагентные), к которым относятся˸

Хлорирование

Озонирование

Использование олигодинамического действия серебра

2. Физические (безреагентные)˸

Кипячение

Ультрафиолетовое облучение

Облучение гамма-лучами и др.

Основным методом для обеззараживания воды на водопроводных станциях в силу технико-экономических причин является хлорирование. Однако всё большее внедрение получает метод озонирования, и ᴇᴦο применение, в том числе, в комбинации с хлорированием имеет преимущества для улучшения качества получаемой воды.

При введении хлорсодержащего реагента в воду основное ᴇᴦο количество – более 95% расходуется на окисление органических и легкоокисляющихся неорганических веществ, содержащихся в воде, на соединение с протоплазмой бактериальных клеток расходуется всего 2-3% общего количества хлора. Количество хлора, которое при хлорировании 1 л воды расходуется на окисление органических, легкоокисляющихся неорганических веществ и обеззараживание бактерий в течение 30 минут, называется хлорпоглощаемостью воды . По окончании процесса связывания хлора содержащимися в воде веществами и бактериями в воде начинает появляться остаточный активный хлор, что является свидетельством завершения процесса хлорирования. Присутствие в воде, подаваемой в водопроводную сеть, остаточного активного хлора в концентрациях 0,3-0,5 мг/л является гарантией эффективности обеззараживания воды, необходимо для предотвращения вторичного загрязнения в разводящей сети и является косвенным показателем безопасности воды в эпидемическом отношении.

Методы улучшения качества питьевой воды - понятие и виды. Классификация и особенности категории "Методы улучшения качества питьевой воды" 2015, 2017-2018.


Top