Теорема о кинетической энергии вывод формулы. Теорема об изменении кинетической энергии

Начнем с определения. Работа А силы F при перемещении х тела, к которому она приложена, определяется как скалярное произведение векторов F и х .

А= F·х= Fxcosα. (2.9.1)

Где α – угол между направлениями силы и перемещения.

Сейчас нам пригодится выражение (1.6 а), которое получено при равноускоренном движении. Но вывод мы сделаем универсальный, который и называется теоремой о кинетической энергии. Итак, перепишем равенство (1.6 а)

a·x =(V 2 –V 0 2)/2.

Умножим обе части равенства на массу частицы, получим

Fx =m(V 2 –V 0 2)/2.

Окончательно

А= m V 2 /2 – m V 0 2 /2. (2.9.1)

Величину Е = m V 2 /2 называют кинетической энергией частицы.

Вы привыкли, что в геометрии теоремы имеют свою устную формулировку. Чтобы не отстать от этой традиции, представим теорему о кинетической энергии в виде текста.

Изменение кинетической энергии тела равно работе всех сил, действующих на него.

Данная теорема носит универсальный характер, т. е. справедлива для любого вида движения. Однако точное её доказательство связано с применением интегрального исчисления. Поэтому мы его опускаем.

Рассмотрим пример движения тела в поле тяжести. Работа силы тяжести не зависит от вида траектории, соединяющей начальную и конечную точки, а определяется только разностью высот в начальном и конечном положениях:

А=mg(h 1 –h 2). (2.9.2)

Примем какую-нибудь точку поля тяжести за начало отсчета и будем рассматривать работу, совершаемую силой тяжести при перемещении частицы в эту точку из другой произвольной точки Р , находящейся на высоте h . Эта работа равна mgh и называется потенциальной энергией Е п частицы в точке Р :

Е п = mgh (2.9.3)

Теперь преобразуем равенство (2.9.1), механическая теорема о кинетической энергии примет вид

А= m V 2 /2 – m V 0 2 /2= Е п1 – Е п2 . (2.9.4)

m V 2 /2+ Е п2 = m V 0 2 /2+ Е п1 .

В этом равенстве в левой части стоит сумма кинетической и потенциальной энергии в конечной точке траектории, а в правой – в начальной.

Эту сумму называют полной механической энергией. Будем обозначать ее Е .

Е = Е к + Е п.

Мы пришли к закону сохранения полной энергии: в замкнутой системе полная энергия сохраняется.

Однако следует сделать одно замечание. Пока мы рассматривали пример так называемых консервативных сил . Эти силы зависят только от положения в пространстве. А работа, совершаемая такими силами при перемещении тела из одного положения в другое, зависит только от этих двух положений и не зависит от пути. Работа, совершаемая консервативной силой, является механически обратимой, т. е. меняет свой знак при возврате тела в исходное положение. Сила тяжести является консервативной силой. В дальнейшем мы познакомимся с другими видами консервативных сил, например, с силой электростатического взаимодействия.


Но в природе бывают и неконсервативные силы . Например, сила трения скольжения. Чем больше путь частицы, тем большую работу совершает сила трения скольжения, действующая на эту частицу. Кроме того, работа силы трения скольжения всегда отрицательна, т. е. «вернуть» энергию такая сила не может.

Для замкнутых систем полная энергия, конечно, сохраняется. Но для большинства задач механики более важным является частный случай закона сохранения энергии, а именно закон сохранения полной механической энергии. Вот его формулировка.

Если на тело действуют только консервативные силы, то его полная механическая энергия, определяемая как сумма кинетической и потенциальной энергий, сохраняется .

В дальнейшем нам понадобятся ещё два важных равенства. Как всегда, вывод заменим простой демонстрацией частного случая поля тяжести. Но вид этих равенств будет справедлив для любых консервативных сил.

Приведем равенство (2.9.4) к виду

А=F x= Е п1 – Е п2 = –( Е п.кон – Е п.нач)= – ∆U.

Здесь мы рассмотрели работу А при перемещении тела на расстояние ∆x. Величину ∆U, равную разности конечной и начальной потенциальной энергии, называют изменением потенциальной энергии. А полученное равенство заслуживает отдельной строчки и специального номера. Поспешим его присвоить ему:

А= – ∆U (2.9.5)

Отсюда же вытекает математическая связь между силой и потенциальной энергией:

F = – ∆U/∆x (2.9.6)

В общем случае, не связанном с полем тяжести, равенство (2.9.6) представляет собой простейшее дифференциальное уравнение

F= – dU/dx.

Последний пример рассмотрим без доказательства. Гравитационная сила описывается законом всемирного тяготения F(r)=GmM/r 2 и является консервативной. Выражение для потенциальной энергии гравитационного поля имеет вид:

U(r)= –GmM/r.

Автор : Разберем простой случай. На тело массой m, находящееся на горизонтальной плоскости, действует в течение промежутка времени Т горизонтальная сила F . Трение отсутствует. Чему равна работа силы F ?

Студент : За время Т тело переместится на расстояние S=аТ 2 /2, где а =F /m. Следовательно, искомая работа есть А =F S=F 2 T 2 /(2m).

Автор : Все правильно, если считать, что тело покоилось до того, как на него начала действовать сила. Несколько усложним задачу. Пусть до начала действия силы тело двигалось прямолинейно и равномерно с некоторой скоростью V 0 , сонаправленной с внешней силой. Чему теперь равна работа за время Т ?

Студент : Для расчета перемещения возьму более общую формулу S= V 0 T + аТ 2 /2, для работы получаю А =F (V 0 T + аТ 2 /2). Сравнивая с предыдущим результатом, вижу, что одна и та же сила за одинаковые промежутки времени производит разную работу.

Тело массой m скользит вниз по наклонной плоскости с углом наклона α. Коэффициент трения скольжения тела о плоскость k . На тело все время действует горизонтальная сила F . Чему равна работа этой силы при перемещении тела на расстояние S?

Студент : Произведем расстановку сил и найдем их равнодействующую. На тело действует внешняя сила F, а также силы тяжести, реакции опоры и трения.

Студент : Получается, что работа А= F Scos α и всё. Меня действительно подвела привычка каждый раз искать все силы, тем более что в задаче указана масса и коэффициент трения.

Студент : Работу силы F я уже вычислил: А 1 = F S cos α. Работа силы тяжести есть А 2 =mgSsin α. Работа силы трения … отрицательна, т. к. векторы силы и перемещения противоположно направлены: А 3 = – kmgScos α. Работа силы реакции N равна нулю, т. к. сила и перемещение перпендикулярны. Правда, я не очень понимаю смысла отрицательной работы?

Автор : Это означает, что работа данной силы уменьшает кинетическую энергию тела. Кстати. Давайте обсудим движение тела, изображенного на рис.2.9.1, с точки зрения закона сохранения энергии. Для начала найдите суммарную работу всех сил.

Студент : – А = А 1 + А 2 + А 3 = FScos α+ mgSsin α– kmgScos α.

По теореме о кинетической энергии разность кинетических энергий в конечном и начальном состояниях равна совершенной над телом работе:

Е к –Е н =А .

Студент : Может быть, это были другие уравнения, не относящиеся к данной задаче?

Автор : Но все уравнения должны давать одинаковый результат. Дело в том, что потенциальная энергия содержится в скрытом виде в выражении для полной работы. Действительно, вспомните А 2 =mgSsin α=mgh, где h – высота спуска тела. Получите, теперь из теоремы о кинетической энергии выражение закона сохранения энергии.

Студент : Так как mgh=U н – U к, где U н и U к соответственно начальная и конечная потенциальные энергии тела, то имеем:

mV н 2 /2 + U н + А 1 + А 3 = mV к 2 /2+ U к.

Студент : Это, по-моему, легко. Работа силы трения по модулю как раз и равна количеству теплоты Q . Поэтому Q = kmgScos α.

Студент : mV н 2 /2 + U н + А 1 – Q = mV к 2 /2+ U к.

Автор : Теперь несколько обобщим определение работы. Дело в том, что соотношение (2.9.1) верно только для случая действия постоянной силы. Хотя есть немало случаев, когда сила сама зависит от перемещения частицы. Приведите пример.

Студент : Первое, что приходит в голову, это растяжение пружины. По мере перемещения незакрепленного конца пружины сила, все увеличивается. Второй пример связан с маятником, который, как мы знаем, сложнее удержать при больших отклонениях от положения равновесия.

Автор : Хорошо. Давайте остановимся на примере с пружиной. Сила упругости идеальной пружины описывается законом Гука, в соответствии с которым при сжатии (или растяжении) пружины на величину х возникает сила, противоположно направленная смещению, линейно зависящая от х . Запишем закон Гука в виде равенства:

F = – kx (2.9.2)

Здесь k – коэффициент жесткости пружины, x – величина деформации пружины. Изобразите график зависимости F (x ).

Студент : Мой чертеж представлен на рисунке.

Рис.2.9.2

Левая половина графика соответствует сжатию пружины, а правая – растяжению.

Автор : Теперь вычислим работу силы F при перемещении от х =0 до х = S. Для этого существует общее правило. Если нам известна общая зависимость силы от смещения, то работа на участке от х 1 до х 2 есть площадь под кривой F(x) на этом отрезке.

Студент : Значит, работа силы упругости при перемещении тела от х =0 до х =S отрицательна, а модуль её равен площади прямоугольного треугольника: А = kS 2 /2.

А = kх 2 /2. (2.9.3)

Эта работа превращается в потенциальную энергию деформированной пружины.

История.

Резерфорд демонстрировал слушателям распад радия. Экран то светился, то темнел.

Теперь вы видите, сказал Резерфорд, что ничего не видно. А почему ничего не видно, вы сейчас увидите.

Кинœетическая энергия.

Неотъемлемым свойством материи является движение. Различные формы движения материи способны к взаимным превращениям, которые, как установлено, происходят в строго определœенных количественных соотношениях. Единой мерой различных форм движения и типов взаимодействия материальных объектов и является энергия.

Энергия зависит от параметров состояния системы, ᴛ.ᴇ. таких физических величин, которые характеризуют некоторые существенные свойства системы. Энергию, зависящую от двух векторных параметров, характеризующих механическое состояние системы, а именно, радиус-вектора , определяющего положение одного тела относительно другого, и скорости , определяющей быстроту перемещения тела в пространстве, называют механической.

В классической механике представляется возможным разбить механическую энергию на два слагаемых, каждое из которых зависит только от одного параметра:

где - потенциальная энергия, зависящая от относительного расположения взаимодействующих тел; - кинœетическая энергия, зависящая от скорости движения тела в пространстве.

Механическая энергия макроскопических тел может изменяться только за счет работы.

Найдем выражение для кинœетической энергии поступательного движения механической системы. Стоит сказать, что для начала рассмотрим материальную точку массой m . Допустим, что ее скорость в некоторый момент времени t равна . Определим работу результирующей силы , действующей на материальную точку в течение некоторого времени:

Учитывая, что на основе определœения скалярного произведения

где - начальная, а - конечная скорость точки.

Величина

принято называть кинœетической энергией материальной точки.

С помощью этого понятия соотношение (4.12) запишется в виде

Из (4.14) следует, что энергия имеет такую же размерность, как и работа͵ и следовательно, измеряется в тех же единицах.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, работа результирующей всœех сил, действующих на материальную точку, равна приращению кинœетической энергии этой точки. Отметим, что приращение кинœетической энергии может быть положительным или отрицательным в зависимости от знака, совершенной работы (сила может либо ускорять, либо тормозить движение тела). Данное утверждение принято называть теоремой о кинœетической энергии.

Полученный результат без труда обобщается на случай поступательного движения произвольной системы материальных точек. Кинœетической энергией системы принято называть сумма кинœетических энергий материальных точек, из которых эта система состоит. В результате сложения соотношений (4.13) для каждой материальной точки системы, снова получится формула (4.13), но уже для системы материальных точек:

где m – масса всœей системы.

Отметим, что имеется существенное отличие теоремы о кинœетической энергии (закона об изменении кинœетической энергии) и закона об изменении импульса системы. Как известно, приращение импульса системы определяется только внешними силами. Внутренние силы вследствие равенства действия и противодействия не меняют импульс системы. Не так обстоит дело в случае кинœетической энергии. Работа внутренних сил, вообще говоря, не обращается в нуль. К примеру, при движении двух материальных точек, взаимодействующих между собой силами притяжения, каждая из сил совершит положительную работу, и будет положительной приращение кинœетической энергии всœей системы. Следовательно, приращение кинœетической энергии определяется работой не только внешних, но и внутренних сил.


  • - Теорема о кинетической энергии

    Криволинейным интегралом 2-го рода, вычисление которого, как правило, проще, чем вычисление криволинейного интеграла 1-го рода. Мощностью силыf называется работа силы в единицу времени. Так как за бесконечно малое время dt сила совершает работу dA = fsds = fdr, то мощность...

  • Теорема о кинетической энергии точки в дифференциальной форме

    Умножая скалярно обе части уравнения движения материальной точки на элементарное перемещение точки получим

    или, так как , то

    Скалярная величина или половина произведения массы точки на квадрат ее скорости называется кинетической энергией точки или живой силой точки.

    Последнее равенство составляет содержание теоремы о кинетической энергии точки в дифференциальной форме, которая гласит: дифференциал кинетической энергии точки равен элеменарной работе, действующей на точку силы.

    Физический смысл теоремы о кинетической энергии заключается в том, что работа, производимая действующей на точку силой, накапливается в ней как кинетическая энергия движения.

    Теорема о кинетической энергии точки в интегральной форме

    Пусть точка переместилась из положения Л в положение В, пройдя по своей траектории конечную дугу АВ (рис. 113). Интегрируя в пределах от Л до Б равенство:

    где соответственно скорости точки в положениях А и В.

    Последнее равенство составляет содержание теоремы о кинетической энергии точки в интегральной форме, которая гласит: изменение кинетической энергии точки за некоторый промежуток времени равно работе, совершенной за то же время действующей на нее силой.

    Полученная теорема справедлива при движении точки под действием любой силы. Однако, как указывалось, для вычисления полной работы силы нужно в общем случае знать уравнения движения точки.

    Поэтому теорема о кинетической энергии, вообще говоря, не дает первого интеграла уравнений движения.

    Интеграл энергии

    Теорема о кинетической энергии дает первый интеграл урав нений движения точки, если полная работа силы может быть определена, не прибегая к уравнениям движения. Последнее, возможно, как ранее указывалось, если сила, действующая на точку, принадлежит к силовому полю. В этом случае достаточно знать только траекторию точки. Пусть траектория точки будет некоторая кривая, тогда координаты ее точек можно выразить через дугу траектории, и, следовательно, сила зависящая от координат точки, может быть выражена через

    и теорема о кинетической энергии дает первый интеграл вида

    где - дуги траектории, соответствующие точкам А и - проекция силы на касательную к траектории (рис. 113).

    Потенциальная энергия и закон сохранения механической энергии точки

    Особый интерес представляет движение точки в потенциальном поле, так как теорема о кинетической энергии дает при этом весьма важный интеграл уравнений движения.

    В потенциальном поле полная работа силы равна разности значений силовой функции в конце и в начале пути:

    Следовательно, теорема о кинетической энергии в этом случае записывается в виде:

    Силовая функция, взятая с обратным знаком называется потенциальной энергией точки и обозначается буквой П:

    Потенциальная энергия, так же как и силовая функция, задается с точностью до произвольной постоянной, значение которой определяется выбором нулевой поверхности уровня. Сумма кинетической и потенциальной энергии точки называется полной механической энергией точки.

    Теорема о кинетической энергии точки, если сила принадлежит к потенциальному полю, записывается в виде:

    где - значения потенциальной энергии, соответствующие точкам А и В. Полученное уравнение составляет содержание закона сохранения механической энергии для точки, который гласит: при движении в потенциальном поле сумма кинетической и потенциальной энергии точки остается постоянной.

    Так как закон сохранения механической энергии справедлив только для сил, принадлежащих потенциальным полям, то силы такого поля называются консервативными (от латинского глагола conservare - сохранять), чем подчеркивается выполнение в этом случае сформулированного закона. Заметим, что если понятие кинетической энергии имеет в своем определении известные физические основания, то понятие потенциальной энергии этого лишено. Понятие потенциальной энергии в известном смысле является фиктивной величиной, которая определяется так, что изменения ее значения в точности соответствуют изменениям кинетической энергии. Введение этой величины, связанной с движением, помогает описанию движения и благодаря этому играет существенную роль в так называемом энергетическом описании движения, разрабатываемый аналитической механикой. В последнем и заключается смысл введения этой величины.

    Теорема о кинетической энергии формулируется так. Сумма работы всех сил (консервативных и неконсервативных), приложенных к телу, равна приращению его кинетической энергии. С помощью этой теоремы можно обобщить закон сохранения механической энергии на случай незамкнутой (неизолированной) системы : приращению полной механической энергии системы равно работе сторонних сил над системой.

    Траектория

    Траекторией называется воображаемая линия, описываемая телом при движении. В зависимости от формы траектории движения бывают криволинейные и прямолинейные. Примеры криволинейного движения: движение тела, брошенного под углом к горизонту (траектория – парабола), движение материальной точки по окружности.

    Трение

    Возникает между двумя телами в плоскости соприкосновения их поверхностей и сопровождается диссипацией (рассеиванием) энергии. Механическая энергия системы, в которой есть трение, может только уменьшаться. Наука, изучающая трение, называется трибологией. Опытным путем установлено, что максимальная сила трения покоя и сила трения скольжения не зависит от площади соприкосновения тел и пропорциональна силе нормального давления, прижимающей поверхности друг к другу. Коэффициент пропорциональности при этом называется коэффициентом трения (покоя или скольжения).

    Третий закон Ньютона

    Третий закон Ньютона - физический закон, в соответствии с которым силы взаимодействия двух материальных точек равны по модулю, противоположны по направлению и действуют вдоль прямой, соединяющей эти точки. Как и прочие законы Ньютона, третий закон справедлив только для инерциальных систем отсчета . Краткая формулировка третьего закона: действие равно противодействию.

    Третья космическая скорость

    Третья космическая скорость - минимальная скорость , необходимая для того, чтобы космический аппарат, запущенный с Земли, преодолел притяжение Солнца и покинул Солнечную систему. Если бы Земля в момент запуска была неподвижна и не притягивала тело к себе, то третья космическая скорость была бы равна 42 км/с. С учетом скорости орбитального движения Земли (30 км/с) третья космическая скорость равна 42-30 = 12 км/с (при запуске в направлении орбитального движения) или 42+30 = 72 км/с (при запуске в противоположном направлении). Если учесть еще и силу притяжения к Земле, то для третьей космической скорости получим значения от 17 до 73 км/с.



    Ускорение

    Ускорение - векторная величина, характеризующая быстроту изменения скорости . При произвольном движении ускорение определяется как отношение приращения скорости к соответствующему промежутку времени. Если устремить этот промежуток времени к нулю, получим мгновенное ускорение. Значит, ускорение есть производная от скорости по времени. Если рассматривается конечный промежуток времени Δt, то ускорение называется средним. При криволинейном движении полное ускорение складывается из тангенциального (касательного) и нормального ускорения .

    Угловая скорость

    Угловая скорость - векторная величина, характеризующая вращательное движение твердого тела и направленная по оси вращения согласно правилу правого винта. Средняя угловая скорость численно равна отношению угла поворота к соответствующему промежутку времени. Взяв производную от угла поворота по времени, получим мгновенную угловую скорость. Единицей угловой скорости в СИ является рад/с.

    Ускорение свободного падения

    Ускорение свободно падающего тела - ускорение, с которым движется тело под действием силы тяготения. Ускорение свободного падения одинаково для всех тел, независимо от их массы . На Земле ускорение свободно падающего тела зависит от высоты над уровнем моря и от географической широты и направления к центру Земли. На широте 45 0 и на уровне моря ускорение свободно падающего тела g = 9.80665 м/с 2 . В учебных задачах обычно полагают g = 9,81 м/с 2 .

    Физический закон

    Физический закон - необходимая, существенная и устойчиво повторяющаяся связь между явлениями, процессами и состояниями тел. Познание физических законов составляет основную задачу физической науки.

    50. Физический маятник

    Физический маятник - абсолютно твердое тело , имеющее ось вращения. В поле тяготения физический маятник может совершать колебания около положения равновесия, при этом массу системы нельзя считать сосредоточенной в одной точке. Период колебаний физического маятника зависит от момента инерции тела и от расстояния от оси вращения до центра масс .

    Энергия (от греч. energeia – деятельность)

    Энергия - скалярная физическая величина, являющаяся общей мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие. Основные виды энергии: механическая, внутренняя, электромагнитная, химическая, гравитационная, ядерная. Одни виды энергии могут превращаться в другие в строго определенных количествах (см. также Закон сохранения и превращения энергии ).

    Термодинамика и молекулярная физика

    
    Top